scholarly journals A TRMM-Based Tropical Cyclone Cloud and Precipitation Feature Database

2011 ◽  
Vol 50 (6) ◽  
pp. 1255-1274 ◽  
Author(s):  
Haiyan Jiang ◽  
Chuntao Liu ◽  
Edward J. Zipser

AbstractThe Tropical Rainfall Measuring Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. The challenge, however, is how to analyze and efficiently utilize all of the information from several instruments on TRMM that observe the same target. In this study, a tropical cyclone precipitation, cloud, and convective cell feature (TCPF) database has been developed by using observations of the TRMM precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), Lightning Imaging System (LIS), and the TRMM 3B42 rainfall product. The database is based on an event-based method that analyzes the measurements from multiple sensors. This method condenses the original information of pixel-level measurements into the properties of events, which can significantly increase the efficiency of searching and sorting the observed historical TCs. With both convective and rainfall properties included, the database offers the potential to aid the research aiming to improve both TC intensification and rainfall forecasts. Using the TRMM TCPF database, regional variations of TC convection and diurnal variations of TC rainfall are examined. In terms of absolute number, the northwest Pacific Ocean basin has the deepest and most intense TCPFs according to IR, radar, and 85-GHz microwave measurements. However, the North Atlantic TCPFs appear to have the highest lightning production. Globally, TC rainfall has a maximum at 0430–0730 local solar time (LST) and a minimum around 1930–2230 LST. However, after separating ocean from land, a distinct difference is seen. Over land, the diurnal variation of TC rainfall shows double peaks: one around 0130–0730 LST and the other at 1630–1930 LST. The minimum is at 1030–1330 LST.

2013 ◽  
Vol 26 (8) ◽  
pp. 2563-2579 ◽  
Author(s):  
Gregor Skok ◽  
Julio Bacmeister ◽  
Joseph Tribbia

Abstract A recently developed object identification algorithm is applied to multisensor precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM 3B42) to detect and quantify the contribution of tropical cyclone precipitation (TCP) to total precipitation between 1998 and 2008. The study period includes 1144 storms. Estimates of TCP derived here are similar in pattern and seasonal variation to earlier estimates but are somewhat higher in magnitude. Annual-mean TCP fractions of over 20% are diagnosed over large swaths of tropical ocean, with seasonal means in some regions of more than 50%. Interannual variability of TCP is examined, and a small but significant downward trend in global TCP from 1998 to 2008 is found, consistent with results from independent studies examining accumulated cyclone energy (ACE). Relationships between annual-mean ACE and TCP in each major tropical cyclone basin are examined. High correlations are found in almost every basin, although different linear relationships exist in each. The highest ACE/TCP ratios are obtained in the North Atlantic and northeast Pacific basins, with lower ratios present in the northwest Pacific and South Pacific basins.


2013 ◽  
Vol 26 (4) ◽  
pp. 1371-1386 ◽  
Author(s):  
Cheng Tao ◽  
Haiyan Jiang

Abstract Global distribution of hot towers in tropical cyclones (TCs) is statistically quantified using an 11-yr Tropical Rainfall Measuring Mission (TRMM) Tropical Cyclone Precipitation Feature (TCPF) database. From 6003 individual TRMM overpasses of 869 TCs, about 1.6% of TC convective systems are found to penetrate 14 km and about 0.1% of them even reach the 380-K potential temperature level. Among six TC-prone basins, the highest population of TC convective systems and those with hot towers are found over the northwest Pacific (NWP) basin. However, the greatest percentage of TCPFs that are hot towers [overshooting TCPFs (OTCPFs)] is found over the North Indian Ocean basin. Larger overshooting distance and ice mass are also found in this basin. The monthly variation of OTCPFs resembles that of TC activities in each basin. The percentage of OTCPFs is much higher in the inner core (IC) region (10%) than that in the inner rainband (IB; 2%) and outer rainband (OB; 1%) regions. OTCPFs in the IC region have much larger overshooting distance, area, volume, and ice mass than those in the IB and OB regions. The percentage of OTCPFs in the IC region increases as both TC intensity and intensification rate increase. About 17% of IC features in rapidly intensifying storms penetrate over 14 km, while the percentage is down to 11% for slowly intensifying, 9% for neutral, and 8% for weakening storms. A very good linear relationship is found between TC intensification rate and the percentage of TCPFs that are hot towers in the IC region.


2021 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Xi Chen ◽  
Mei Hong ◽  
Shiqi Wu ◽  
Kefeng Liu ◽  
Kefeng Mao

To study the optimal design of Wave Glider parameters in the wave environment of the Northwest Pacific Ocean, the North Indian Ocean, and the South China Sea, the average velocity of a Wave Glider was taken as the evaluation criterion. Wave reanalysis data from ERA5 were used to classify the mean wave height and period into five types by the K-means clustering method. In addition, a dynamic model was used to simulate the influence of umbilical length, airfoil, and maximum limited angle on the velocity of the Wave Glider under the five types of wave element. The force of the wings was simulated using FLUENT as the model input. The simulation results show that (1) 7 m is the most suitable umbilical length; (2) a smaller relative thickness should be selected in perfect conditions; and (3) for the first type of wave element, 15° is the best choice for the maximum limited angle, and 20° is preferred for the second, third, and fourth types, while 25° is preferred for the fifth type.


2021 ◽  
Vol 13 (4) ◽  
pp. 661
Author(s):  
Mohamed Freeshah ◽  
Xiaohong Zhang ◽  
Erman Şentürk ◽  
Muhammad Arqim Adil ◽  
B. G. Mousa ◽  
...  

The Northwest Pacific Ocean (NWP) is one of the most vulnerable regions that has been hit by typhoons. In September 2018, Mangkhut was the 22nd Tropical Cyclone (TC) over the NWP regions (so, the event was numbered as 1822). In this paper, we investigated the highest amplitude ionospheric variations, along with the atmospheric anomalies, such as the sea-level pressure, Mangkhut’s cloud system, and the meridional and zonal wind during the typhoon. Regional Ionosphere Maps (RIMs) were created through the Hong Kong Continuously Operating Reference Stations (HKCORS) and International GNSS Service (IGS) data around the area of Mangkhut typhoon. RIMs were utilized to analyze the ionospheric Total Electron Content (TEC) response over the maximum wind speed points (maximum spots) under the meticulous observations of the solar-terrestrial environment and geomagnetic storm indices. Ionospheric vertical TEC (VTEC) time sequences over the maximum spots are detected by three methods: interquartile range method (IQR), enhanced average difference (EAD), and range of ten days (RTD) during the super typhoon Mangkhut. The research findings indicated significant ionospheric variations over the maximum spots during this powerful tropical cyclone within a few hours before the extreme wind speed. Moreover, the ionosphere showed a positive response where the maximum VTEC amplitude variations coincided with the cyclone rainbands or typhoon edges rather than the center of the storm. The sea-level pressure tends to decrease around the typhoon periphery, and the highest ionospheric VTEC amplitude was observed when the low-pressure cell covers the largest area. The possible mechanism of the ionospheric response is based on strong convective cells that create the gravity waves over tropical cyclones. Moreover, the critical change state in the meridional wind happened on the same day of maximum ionospheric variations on the 256th day of the year (DOY 256). This comprehensive analysis suggests that the meridional winds and their resulting waves may contribute in one way or another to upper atmosphere-ionosphere coupling.


10.1175/814.1 ◽  
2004 ◽  
Vol 19 (6) ◽  
pp. 1044-1060 ◽  
Author(s):  
Eric S. Blake ◽  
William M. Gray

Abstract Although skillful seasonal hurricane forecasts for the Atlantic basin are now a reality, large gaps remain in our understanding of observed variations in the distribution of activity within the hurricane season. The month of August roughly spans the first third of the climatologically most active part of the season, but activity during the month is quite variable. This paper reports on an initial investigation into forecasting year-to-year variability of August tropical cyclone (TC) activity using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. It is shown that 55%–75% of the variance of August TC activity can be hindcast using a combination of 4–5 global predictors chosen from a 12-predictor pool with each of the predictors showing precursor associations with TC activity. The most prominent predictive signal is the equatorial July 200-mb wind off the west coast of South America. When this wind is anomalously strong from the northeast during July, Atlantic TC activity in August is almost always enhanced. Other July conditions associated with active Augusts include a weak subtropical high in the North Atlantic, an enhanced subtropical high in the northwest Pacific, and low pressure in the Bering Sea region. The most important application of the August-only forecast is that predicted net tropical cyclone (NTC) activity in August has a significant relationship with the incidence of U.S. August TC landfall events. Better understanding of August-only TC variability will allow for a more complete perspective of total seasonal variability and, as such, assist in making better seasonal forecasts.


2014 ◽  
Vol 112 (5) ◽  
pp. 1310-1315 ◽  
Author(s):  
John N. Smith ◽  
Robin M. Brown ◽  
William J. Williams ◽  
Marie Robert ◽  
Richard Nelson ◽  
...  

The large discharge of radioactivity into the northwest Pacific Ocean from the 2011 Fukushima Dai-ichi nuclear reactor accident has generated considerable concern about the spread of this material across the ocean to North America. We report here the first systematic study to our knowledge of the transport of the Fukushima marine radioactivity signal to the eastern North Pacific. Time series measurements of 134Cs and 137Cs in seawater revealed the initial arrival of the Fukushima signal by ocean current transport at a location 1,500 km west of British Columbia, Canada, in June 2012, about 1.3 y after the accident. By June 2013, the Fukushima signal had spread onto the Canadian continental shelf, and by February 2014, it had increased to a value of 2 Bq/m3 throughout the upper 150 m of the water column, resulting in an overall doubling of the fallout background from atmospheric nuclear weapons tests. Ocean circulation model estimates that are in reasonable agreement with our measured values indicate that future total levels of 137Cs (Fukushima-derived plus fallout 137Cs) off the North American coast will likely attain maximum values in the 3–5 Bq/m3 range by 2015–2016 before declining to levels closer to the fallout background of about 1 Bq/m3 by 2021. The increase in 137Cs levels in the eastern North Pacific from Fukushima inputs will probably return eastern North Pacific concentrations to the fallout levels that prevailed during the 1980s but does not represent a threat to human health or the environment.


Zootaxa ◽  
2020 ◽  
Vol 4748 (1) ◽  
pp. 163-181 ◽  
Author(s):  
JOHANNA N. J. WESTON ◽  
PRISCILLA CARRILLO-BARRAGAN ◽  
THOMAS D. LINLEY ◽  
WILLIAM D. K. REID ◽  
ALAN J. JAMIESON

Eurythenes S. I. Smith in Scudder, 1882 are one of the largest scavenging deep-sea amphipods (max. 154 mm) and are found in every ocean across an extensive bathymetric range from the shallow polar waters to hadal depths. Recent systematic studies of the genus have illuminated a cryptic species complex and highlighted the benefits of using a combination of morphological and molecular identification approaches. In this study, we present the ninth species, Eurythenes plasticus sp. nov., which was recovered using baited traps between the depths 6010 and 6949 m in the Mariana Trench (Northwest Pacific Ocean) in 2014. This new Eurythenes species was found to have distinct morphological characteristics and be a well-supported clade based on sequence variation at two mitochondrial regions (16S rDNA and COI). While this species is new to science and lives in the remote hadal zone, it is not exempt from the impacts of anthropogenic pollution. Indeed, one individual was found to have a microplastic fibre, 83.74% similar to polyethylene terephthalate (PET), in its hindgut. As this species has a bathymetric range spanning from abyssal to hadal depths in the Central Pacific Ocean basin, it offers further insights into the biogeography of Eurythenes. 


2012 ◽  
Vol 27 (3) ◽  
pp. 744-756 ◽  
Author(s):  
Sam Trahan ◽  
Lynn Sparling

Abstract This study analyzes the Tropical Cyclone Vitals Database (TCVitals), which contains cyclone location, intensity, and structure information, generated in real time by forecasters. These data are used to initialize cyclones in several NCEP operational forecasting models via bogusing and vortex relocation methods. In many situations, time is of the essence and the TCVitals database represents the best real-time estimate of the cyclone state possible in real time, given the limitations of available data and time constraints inherent in real-time forecasting. NCEP and other users of TCVitals have a responsibility to work around the inevitable limitations of what forecasters can do for TCVitals in real time. With ensemble systems becoming available, a way to do that will soon be available. However, the TCVitals’ limitations must first be quantitatively understood so that model developers can take them into account. That is the motivation for the present study, which compares the TCVitals storm location and intensity to postseason reanalysis values found in the best-track database and statistically compares the TCVitals storm depth to 946 Tropical Rainfall Measuring Mission (TRMM) overpasses. All storms of tropical depression strength or stronger in all basins are analyzed, with a special focus on National Hurricane Center TCVitals for the North Atlantic and eastern Pacific basins, the main areas of responsibility for NCEP. In addition, the sensitivity to TCVitals on the Hurricane Weather Research and Forecasting (HWRF) model is examined by rerunning the 2011 HWRF for the 2010 North Atlantic season twice: once with TCVitals input and once with best-track input.


2020 ◽  
Author(s):  
Yunfei Zhang ◽  
Xiang Li ◽  
Tiejun Ling ◽  
Chenqi Wang ◽  
Hongyu Qu

<p>Tropical cyclone (TC) activity has significant seasonal, interannual and interdecadal variations. Accurate prediction of TC seasonal activities before the onset of the coming TC season (June-November) can provide sufficient time for the government and the public to prepare for tropical cyclone disasters and minimize risks and life losses.<br>Based on COAWST model, we developed a new regional coupled seasonal forecasting system for the Northwest Pacific Ocean including a series of technology improvements. The results of multi-year hindcast experiments show that the coupled seasonal forecasting system can effectively improve the tropical cyclone frequency and intensity forecast compared to the CFSv2 real-time seasonal forecast, especially the tropical cyclone frequency forecast of the TC exceeding the typhoon level, but there is still a certain gap between the results in the forecasting system and the observed TC frequency and intensity, which is mainly reflected in the fact that the forecasting season has a higher frequency of TCs and the peak of strong TCs is relatively weaker. This gap may be caused by the forecasting bias of the sea surface temperature.</p>


2009 ◽  
Vol 2 (4) ◽  
pp. 286-289 ◽  
Author(s):  
Susanne M. Straub ◽  
Steven L. Goldstein ◽  
Cornelia Class ◽  
Angelika Schmidt

Sign in / Sign up

Export Citation Format

Share Document