scholarly journals The Convection, Aerosol, and Synoptic-Effects in the Tropics (CAST) Experiment: Building an Understanding of Multiscale Impacts on Caribbean Weather via Field Campaigns

2017 ◽  
Vol 98 (8) ◽  
pp. 1593-1600 ◽  
Author(s):  
N. Hosannah ◽  
J. González ◽  
R. Rodriguez-Solis ◽  
H. Parsiani ◽  
F. Moshary ◽  
...  

Abstract Modulated by global-, continental-, regional-, and local-scale processes, convective precipitation in coastal tropical regions is paramount in maintaining the ecological balance and socioeconomic health within them. The western coast of the Caribbean island of Puerto Rico is ideal for observing local convective dynamics as interactions between complex processes involving orography, surface heating, land cover, and sea-breeze–trade wind convergence influence different rainfall climatologies across the island. A multiseason observational effort entitled the Convection, Aerosol, and Synoptic-Effects in the Tropics (CAST) experiment was undertaken using Puerto Rico as a test case, to improve the understanding of island-scale processes and their effects on precipitation. Puerto Rico has a wide network of observational instruments, including ground weather stations, soil moisture sensors, a Next Generation Weather Radar (NEXRAD), twice-daily radiosonde launches, and Aerosol Robotic Network (AERONET) sunphotometers. To achieve the goals of CAST, researchers from multiple institutions supplemented existing observational networks with additional radiosonde launches, three high-resolution radars, continuous ceilometer monitoring, and air sampling in western Puerto Rico to monitor convective precipitation events. Observations during three CAST measurement phases (22 June–10 July 2015, 6–22 February 2016, and 24 April–7 May 2016) captured the most extreme drought in recent history (summer 2015), in addition to anomalously wet early rainfall and dry-season (2016) phases. This short article presents an overview of CAST along with selected campaign data.

Author(s):  
Feng Hsiao ◽  
Yi-Leng Chen ◽  
Hiep Van Nguyen ◽  
David Eugene Hitzl ◽  
Robert Ballard

AbstractSatellite observations and high-resolution modeling during July–August 2013 are used to study the effects of trade wind strength on island wake circulations and cloudiness over O‘ahu, Hawai‘i. O‘ahu is composed of two northwest–southeast orientated mountain ranges: the Wai‘anae Range (~1227 m) along the western leeside coast and the Ko‘olau Range (~944 m) along the eastern windward coast. At night, the flow deceleration of the incoming northeasterly trade winds on the eastern windward side is more significant when trades are stronger.In the afternoon hours, effective albedo and simulated cloud water are greater over the Ko‘olau Range when trades are stronger, and clouds are advected downstream by the trade winds aloft. Over the Wai‘anae Range, orographic clouds are more significant when trades are weaker due to less moisture removal by orographic precipitation over the Ko‘olau Range and the development of both upslope flow on the eastern slope and upslope/sea-breeze flow along the western coast, the latter of which brings in warm, moist air from the ocean. When trades are weaker, cloudiness off the western leeside coast is more extensive and originates from orographic cloud development over the Wai‘anae Range, which drifts downstream due to a combination of trade winds and the easterly return flow aloft. The latter is associated with the low-level sea-breeze/upslope flow.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrina Nilsson-Kerr ◽  
Pallavi Anand ◽  
Philip B. Holden ◽  
Steven C. Clemens ◽  
Melanie J. Leng

AbstractMost of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.


2019 ◽  
Vol 34 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Paul W. Miller ◽  
Thomas L. Mote ◽  
Craig A. Ramseyer

Abstract With limited groundwater reserves and few reservoirs, Caribbean islands such as Puerto Rico are largely dependent on regular rainfall to meet societal and ecological water needs. Thus, the ability to anticipate seasonal rainfall shortages, such as the 2015 drought, is particularly important, yet few reliable tools exist for this purpose. Consequently, interpolated surface precipitation observations from the Daymet archive are summarized on daily, annual, and seasonal time scales and compared to the host thermodynamic environment as characterized by the Gálvez–Davison index (GDI), a convective potential parameter designed specifically for the tropics. Complementing the Daymet precipitation totals, ≥1.1 million WSR-88D volume scans between 2002 and 2016 were analyzed for echo tops ≥ 10 000 ft (~3 km) to establish a radar-inferred precipitation activity database for Puerto Rico. The 15-yr record reveals that the GDI outperforms several midlatitude-centric thermodynamic indices, explaining roughly 25% of daily 3-km echo top (ET) activity during each of Puerto Rico’s primary seasons. In contrast, neither mean-layer CAPE, the K index, nor total totals explain more than 11% during any season. When aggregated to the seasonal level, the GDI strongly relates to 3-km ET (R2 = 0.65) and Daymet precipitation totals (R2 = 0.82) during the early rainfall season (ERS; April–July), with correlations weaker outside of this period. The 4-month ERS explains 51% (41%) of the variability to Puerto Rico’s annual rainfall during exceptionally wet (dry) years. These findings are valuable for climate downscaling studies predicting Puerto Rico’s hydroclimate in future atmospheric states, and they could potentially be adapted for operational seasonal precipitation forecasting.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


2012 ◽  
Vol 54 (4) ◽  
pp. 179-191 ◽  
Author(s):  
Jordi Sanchez-Ribas ◽  
Gabriel Parra-Henao ◽  
Anthony Érico Guimarães

Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas). Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2253
Author(s):  
Myrish Pacleb ◽  
O-Young Jeong ◽  
Jeom-Sig Lee ◽  
Thelma Padolina ◽  
Rustum Braceros ◽  
...  

Temperate japonica rice is mainly cultivated in temperate regions. Many temperate japonica varieties have a superior grain quality that is preferred in Northeast Asian countries such as Japan, Korea, and China. The changes in consumers’ preferences in Southeast Asia and Western countries has contributed to increasing the demand for temperate japonica. Most temperate japonica varieties developed in temperate regions typically exhibit extra-early flowering under the short-day conditions in the tropics, which usually results in severely reduced yields. Since 1992, we have been developing temperate japonica varieties that can adapt to tropical environments to meet the increasing demand for temperate japonica rice, having released six varieties in the Philippines. Especially, the yield of one of the temperate japonica varieties, Japonica 7, was comparable to the yields of leading indica varieties in the Philippines. Here, we discuss the current breeding initiatives and future plans for the development of tropical-region-bred temperate japonica rice.


2005 ◽  
Vol 35 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Rachel Ifanger Albrecht ◽  
Maria Assunção Faus da Silva Dias

The distinction between convective and stratiform precipitation profiles around various precipitating systems existent in tropical regions is very important to the global atmospheric circulation, which is extremely sensitive to vertical latent heat distribution. In South America, the convective activity responds to the Intraseasonal Oscillation (IOS). This paper analyzes a disdrometer and a radar profiler data, installed in the Ji-Paraná airport, RO, Brazil, for the field experiment WETAMC/LBA & TRMM/LBA, during January and February of 1999. The microphysical analysis of wind regimes associated with IOS showed a large difference in type, size and microphysical processes of hydrometeor growth in each wind regime: easterly regimes had more turbulence and consequently convective precipitation formation, and westerly regimes had a more stratiform precipitation formation.


Sign in / Sign up

Export Citation Format

Share Document