scholarly journals Idealized Numerical Experiments on Cyclone Development in the Tropical, Subtropical, and Extratropical Environments

2015 ◽  
Vol 72 (9) ◽  
pp. 3699-3714 ◽  
Author(s):  
Wataru Yanase ◽  
Hiroshi Niino

Abstract The development of cyclones, particularly in the Southern Hemisphere summer, is active in the tropics and extratropics but is inactive in the subtropics. To elucidate the influence of environmental fields on the cyclone development in the tropics, subtropics, and extratropics, idealized numerical experiments are conducted using a nonhydrostatic channel model. The experiments examine the development of a weak initial vortex within a zonally uniform environmental field that consists of five factors: the Coriolis parameter, zonal wind, potential temperature, relative humidity, and surface temperature difference between the ocean and atmosphere. The idealized experiments successfully reproduce the significant cyclone development in the tropical and extratropical environment as well as no cyclone development in the subtropical environment. This result confirms the dominant role of the environmental field in controlling the cyclone development. To clarify which environmental factor is responsible for the suppression of cyclone development in the subtropics, a series of sensitivity experiments is performed. A tropical cyclone cannot develop in the subtropics because of low temperature, strong stratification, and strong vertical shear compared to the tropics. On the other hand, an extratropical cyclone cannot develop in the subtropics because of the small Coriolis parameter and weak vertical shear compared to the extratropics. The relative humidity and surface temperature difference play only secondary roles. These results provide useful insights into the climatological distribution of various types of synoptic-scale cyclones.

2002 ◽  
Vol 20 (5) ◽  
pp. 729-740 ◽  
Author(s):  
S. Masina

Abstract. Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC). Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs) observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.  This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling) – Oceanography: physics (fronts and jets)


2007 ◽  
Vol 64 (12) ◽  
pp. 4417-4431 ◽  
Author(s):  
Chris Snyder ◽  
David J. Muraki ◽  
Riwal Plougonven ◽  
Fuqing Zhang

Abstract Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.


2013 ◽  
Vol 70 (3) ◽  
pp. 743-766 ◽  
Author(s):  
Akira Yamazaki ◽  
Hisanori Itoh

Abstract The selective absorption mechanism (SAM), newly proposed in Part I of this study on the maintenance mechanism of blocking, is verified through numerical experiments. The experiments were based on the nonlinear equivalent-barotropic potential vorticity equation, with varying conditions with respect to the shape and amplitude of blocking, and characteristics of storm tracks (displacement and strength) and background zonal flow. The experiments indicate that the SAM effectively maintains blocking, irrespective of the above conditions. At first, by applying a channel model on a β plane, numerical experiments were conducted using a uniform background westerly with and without a jet. The results show that the presence of a jet promotes the effectiveness of the SAM. Then, two types of spherical model experiments were also performed. In idealized experiments, the SAM was as effective as the β-plane model in explaining the maintenance of blocking. Moreover, experiments performed under realistic meteorological conditions showed that the SAM maintained a real block, demonstrating that the SAM is effective. These results, and the case study in Part I, verify that the SAM is the effective general maintenance mechanism for blocking.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6726
Author(s):  
Jinshi Wang ◽  
Ziqiang Ma ◽  
Yong Li ◽  
Weiqi Liu ◽  
Gen Li

In this paper, a model was developed to predict the heat transfer characteristics of Marangoni dropwise condensation. In accordance with the feature of Marangoni condensation, condensation was treated as dropwise condensation of mixture vapors. The condensation space was divided into two parts: the vapor diffusion layer and the condensate layer. For the condensate layer, the classical heat transfer calculation method of dropwise condensation was imitated to obtain the heat transfer characteristics. For the vapor diffusion layer, the heat transfer characteristics were achieved by solving the conservation equations. These heat transfer characteristics were coupled through the conjunct boundary, which was the vapor-liquid interface. The model was applied to the condensation of water-ethanol mixture vapors. A comparison with the existing experimental data showed that the developed model could basically reflect the influences of vapor-to-surface temperature difference, vapor concentration, vapor pressure, and vapor velocity on heat transfer characteristic of Marangoni condensation. Results showed that some differences existed between the calculation results and experimental results, but the prediction deviation of the model could be acceptable in the range of vapor-to-surface temperature difference where the condensation heat transfer coefficients reached peak values.


2011 ◽  
Vol 250-253 ◽  
pp. 536-539
Author(s):  
Pei Wang ◽  
Wen Yan Lv ◽  
Zhi Yong Wei ◽  
Xia Zhen Zhang ◽  
Lian Liu ◽  
...  

This paper presented the results of a comparative study aiming to investigate the effect of reflective coatings on lowering surface temperatures of matrix. Moreover, the important factors of the amount and the color of colored hollow-ceramic micro sphere were discussed. It was demonstrated that the use of reflective coatings could reduce a white surface temperature by 6.5 °C compared to a sample. The temperature difference became to reduce while the color of coatings turned to dark from the white to the yellow.


2015 ◽  
Vol 72 (7) ◽  
pp. 2666-2681 ◽  
Author(s):  
Yoshiaki Miyamoto ◽  
Tetsuya Takemi

Triggering processes for the rapidly intensifying phase of a tropical cyclone (TC) were investigated on the basis of numerical experiments using a three-dimensional nonhydrostatic model. The results revealed that the rapid intensification of the simulated TC commenced following the formation of a circular cloud, which occurred about 12 h after the TC became essentially axisymmetric. The circular cloud (eyewall) evolved from a cloudy convective cell that was originally generated near the radius of maximum wind speed (RMW). The development of the convective cell in the eyewall was closely related to the radial location of the strong boundary layer convergence of axisymmetric flow. The radius of maximum convergence (RMC) was small relative to the RMW when the TC vortex was weak, which is consistent with the boundary layer theory for a rotating fluid system on a frictional surface. As the TC intensified, the RMC approached the RMW. An eyewall was very likely to form in the simulated TC when the RMC approached the RMW. Because the RMC is theoretically determined by a Rossby number defined by the maximum tangential velocity, RMW, and Coriolis parameter, a series of numerical experiments was conducted by changing the three parameters. The results were consistent with the hypothesis that intensification occurs earlier for larger Rossby numbers. This finding indicates that initial TC vortices with larger Rossby numbers are more likely to experience rapid intensification and, hence, to evolve into strong hurricanes.


2020 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model. Its development is on the basis of the medium-resolution version BCC-CSM2-MR which is the baseline for BCC participation to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamic core and physical processes. BCC-CSM2-HR is evaluated for present-day climate simulations from 1971 to 2000, which are performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. We focus on basic atmospheric mean states over the globe and variabilities in the tropics including the tropic cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR keeps well the global energy balance and can realistically reproduce main patterns of atmosphere temperature and wind, precipitation, land surface air temperature and sea surface temperature. It also improves in the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, is almost disappeared in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observation than their counterparts in BCC-CSM2-MR. We also note some weakness in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold Sea Surface Temperature (SST) biases and the insufficient number of tropical cyclones in the North Atlantic.


2013 ◽  
Vol 7 (1) ◽  
pp. 37-50
Author(s):  
Masanori Yamasaki

This paper describes results from numerical experiments which have been made toward a better understanding of tropical cyclone formation. This study uses a nonhydrostatic version of the author’s mesoscale-convection-resolving model that was developed in the 1980s to improve paramerization schemes of moist convection. In this study the horizontal grid size is taken to be 20 km in an area of 6,000 km x 3,000 km, and a non-uniform coarse grid is used in two areas to its north and south. Results from two numerical experiments are presented; one (case 1) without any environmental flow, and the other (case 2) with an easterly flow without low-level vertical shear. Three circular buoyancy perturbations are placed in the west-east direction at the initial time. Convection is initiated in the imposed latently unstable (positive CAPE) area. In both cases, a vortex with a pressure low is formed, and two band-shaped convective systems are formed to the north and the south of the vortex center. The vortex and two convective systems are oriented in the westsouthwest – eastnortheast direction, and their horizontal scales are nearly 2,000 km. In case 1, the band-shaped convective system on the southern side is stronger, and winds are stronger just to its south. In contrast, in case 2, the northern convective system is stronger, and winds are stronger just to its north. Therefore, the distributions of the equivalent potential temperature in the boundary layer and latent instability (positive buoyancy of the rising air) are also quite different between cases 1 and 2. The TC formation processes in these different cases are discussed, with an emphasis on the importance of examining the time change of latent instability field.


Sign in / Sign up

Export Citation Format

Share Document