High-Resolution Probabilistic Projections of Temperature Changes over Ontario, Canada

2014 ◽  
Vol 27 (14) ◽  
pp. 5259-5284 ◽  
Author(s):  
Xiuquan Wang ◽  
Guohe Huang ◽  
Qianguo Lin ◽  
Jinliang Liu

Abstract Planning of mitigation and adaptation strategies to a changing climate can benefit from a good understanding of climate change impacts on human life and local society, which leads to an increasing requirement for reliable projections of future climate change at regional scales. This paper presents an ensemble of high-resolution regional climate simulations for the province of Ontario, Canada, developed with the Providing Regional Climates for Impacts Studies (PRECIS) modeling system. A Bayesian statistical model is proposed through an advance to the method proposed by Tebaldi et al. for generating probabilistic projections of temperature changes at gridpoint scale by treating the unknown quantities of interest as random variables to quantify their uncertainties in a statistical way. Observations for present climate and simulations from the ensemble are fed into the statistical model to derive posterior distributions of all the uncertain quantities through a Markov chain Monte Carlo (MCMC) sampling algorithm. Detailed analyses at 12 selected weather stations are conducted to investigate the practical significance of the proposed statistical model. Following that, maps of projected temperature changes at different probability levels are presented to help understand the spatial patterns across the entire province. The analysis shows that there is likely to be a significant warming trend throughout the twenty-first century. It also suggests that people in Ontario are very likely to suffer a change greater than 2°C to mean temperature in the forthcoming decades and very unlikely to suffer a change greater than 10°C to the end of this century.

2020 ◽  
Author(s):  
Claas Teichmann ◽  
Daniela Jacob ◽  
Armelle Reca Remedio ◽  
Thomas Remke ◽  
Lars Buntemeyer ◽  
...  

<p>The Coordinated Output for Regional Evaluations (CORE) simulation ensemble is an effort of the WCRP CORDEX community to provide high resolution regional climate change information for the major inhabited areas of the world and thus to generate the solid scientific basis for further research related to vulnerability, impact, adaptation and climate services (VIACS). This is especially important in those areas in which so far only few high-resolution simulations or only global comparatively coarse simulations were available. The driving simulations were selected to cover the spread of high, medium and low climate sensitivity at a global scale. Initially, the two RCMs REMO and RegCM4 were used to downscale these data global climate model output to a resolution of 0.22° (about 25km) while it is intended that the CORDEX CORE ensemble can then be extended by additional regional simulations to further increase the ensemble size and thus the representation of possible future climate change pathways.</p> <p>The aim of this study is to investigate and document the climate change information provided by the current CORDEX CORE ensemble with respect to mean climate change in different regions and in comparison to previously existing global climate information, especially those global climate simulations used as boundary forcing for CORDEX CORE, but also in comparison to the entire AR5-GCM ensemble. The analysis focuses on the representation of the AR5-GCM range of climate change signals by the CORDEX CORE ensemble with respect to mean temperature and precipitation changes and corresponding shifts in the annual cycles in the new AR6 IPCC physical reference regions. This also provides an indication for CORDEX CORE suitability for VIACS applications in each region.</p>


Author(s):  
Claas Teichmann ◽  
Daniela Jacob ◽  
Armelle Reca Remedio ◽  
Erika Coppola ◽  

<p>The Coordinated Output for Regional Evaluations (CORE) simulation ensemble is an effort of the WCRP CORDEX community to provide high-resolution regional climate change information for the major inhabited areas of the world and thus generate a solid scientific basis for further research related vulnerability, impact, adaptation and climate services. This is especially important in those areas in which only a few high-resolution simulations or only comparatively coarse simulations from global models were available. The driving global climate model (GCM) simulations were selected to cover the spread of high, medium, and low equilibrium climate sensitivity at a global scale. Initially, two regional climate models (RCMs) REMO and RegCM4 were used to downscale GCM output to a spatial resolution of 0.22°. It is intended that the CORDEX-CORE ensemble can then be extended by additional regional simulations to further increase the ensemble size and thus the representation of possible future climate change pathways. </p><p>The aim of this study is to investigate and document the climate change information provided by the current CORDEX-CORE ensemble with respect to the mean climate change in different regions of the world and in comparison to previously existing global climate information, especially those global climate simulations used as boundary forcing for CORDEX-CORE RCMs. First, the regional biases of the RCMs simulations and its driving GCMs simulations were quantified compared to the CRU TS 4.02 observational dataset during the reference period from 1971 to 2000. Second, the near future (2036 to 2065) and far future (2071 to 2099) climate change signals were quantified from the new CORDEX-CORE ensemble. The analysis focuses on the mean temperature and precipitation changes based on the new IPCC physical climate reference regions. For selected regions, the differences of the climate change information at different resolutions are documented. Using this selected regions, the climate change signals from the CORDEX-CORE ensemble were compared to other existing CORDEX simulations and the CMIP5 GCM ensemble. First results of this comparison will be presented.</p>


SOLA ◽  
2015 ◽  
Vol 11 (0) ◽  
pp. 90-94 ◽  
Author(s):  
Akihiko Murata ◽  
Hidetaka Sasaki ◽  
Hiroaki Kawase ◽  
Masaya Nosaka ◽  
Mitsuo Oh'izumi ◽  
...  

2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1469 ◽  
Author(s):  
Stefanos Stefanidis ◽  
Dimitrios Stathis

The aim of this study was to assess soil erosion changes in the mountainous catchment of the Portaikos torrent (Central Greece) under climate change. To this end, precipitation and temperature data were derived from a high-resolution (25 × 25 km) RegCM3 regional climate model for the baseline period 1974–2000 and future period 2074–2100. Additionally, three GIS layers were generated regarding land cover, geology, and slopes in the study area, whereas erosion state was recognized after field observations. Subsequently, the erosion potential model (EPM) was applied to quantify the effects of precipitation and temperature changes on soil erosion. The results showed a decrease (−21.2%) in annual precipitation (mm) and increase (+3.6 °C) in mean annual temperature until the end of the 21st century, and the above changes are likely to lead to a small decrease (−4.9%) in soil erosion potential.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


Author(s):  
S. Supharatid ◽  
J. Nafung ◽  
T. Aribarg

Abstract Five mainland SEA countries (Cambodia, Laos, Myanmar, Vietnam, and Thailand) are threatened by climate change. Here, the latest 18 Coupled Model Intercomparison Project Phase 6 (CMIP6) is employed to examine future climate change in this region under two SSP-RCP (shared socioeconomic pathway-representative concentration pathway) scenarios (SSP2-4.5 and SSP5-8.5). The bias-corrected multi-model ensemble (MME) projects a warming (wetting) over Cambodia, Laos, Myanmar, Vietnam, and Thailand by 1.88–3.89, 2.04–4.22, 1.88–4.09, 2.03–4.25, and 1.90–3.96 °C (8.76–20.47, 12.69–21.10, 9.54–21.10, 13.47–22.12, and 7.03–15.17%) in the 21st century with larger values found under SSP5-8.5 than SSP2-4.5. The MME model displays approximately triple the current rainfall during the boreal summer. Overall, there are robust increases in rainfall during the Southwest Monsoon (3.41–3.44, 8.44–9.53, and 10.89–17.59%) and the Northeast Monsoon (−2.58 to 0.78, −0.43 to 2.81, and 2.32 to 5.45%). The effectiveness of anticipated climate change mitigation and adaptation strategies under SSP2-4.5 results in slowing down the warming trends and decreasing precipitation trends after 2050. All these findings imply that member countries of mainland SEA need to prepare for appropriate adaptation measures in response to the changing climate.


2020 ◽  
Vol 12 (4) ◽  
pp. 2959-2970
Author(s):  
Maialen Iturbide ◽  
José M. Gutiérrez ◽  
Lincoln M. Alves ◽  
Joaquín Bedia ◽  
Ruth Cerezo-Mota ◽  
...  

Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).


2018 ◽  
Vol 2 (3) ◽  
pp. 477-497 ◽  
Author(s):  
Syed Ahsan Ali Bokhari ◽  
Burhan Ahmad ◽  
Jahangir Ali ◽  
Shakeel Ahmad ◽  
Haris Mushtaq ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document