scholarly journals Impact of Snow Grain Shape and Black Carbon–Snow Internal Mixing on Snow Optical Properties: Parameterizations for Climate Models

2017 ◽  
Vol 30 (24) ◽  
pp. 10019-10036 ◽  
Author(s):  
Cenlin He ◽  
Yoshi Takano ◽  
Kuo-Nan Liou ◽  
Ping Yang ◽  
Qinbin Li ◽  
...  

A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optics surface wave (GOS) computations, which explicitly resolves BC–snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 μm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 μm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC–snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 μm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC–snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.

2019 ◽  
Vol 19 (1) ◽  
pp. 181-204 ◽  
Author(s):  
Gabriele Curci ◽  
Ummugulsum Alyuz ◽  
Rocio Barò ◽  
Roberto Bianconi ◽  
Johannes Bieser ◽  
...  

Abstract. An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440 nm (ω0,440) is on average overestimated (underestimated) by 3–5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω0,440 by ∼14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω0,440 bias to -1/-3 %. The black carbon absorption enhancement (Eabs) in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of ∼1.5. The partial internal mixing reduces Eabs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE675440 is overestimated by 70–120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.


2018 ◽  
Author(s):  
Gabriele Curci ◽  
Ummugulsum Alyuz ◽  
Rocio Barò ◽  
Roberto Bianconi ◽  
Johannes Bieser ◽  
...  

Abstract. An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to one year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440 nm (ω0,440) is on average overestimated (underestimated) by 3–5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω0,440 by ~ 14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω0,440 bias to −1/−3 %. The black carbon absorption enhancement (Eabs) in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of ~ 1.5. The partial internal mixing reduces Eabs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Angostrom exponent AAE440675 is overestimated by 70–120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.


2014 ◽  
Vol 14 (13) ◽  
pp. 7031-7043 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.


2014 ◽  
Vol 7 (5) ◽  
pp. 2503-2516 ◽  
Author(s):  
K. Klingmüller ◽  
B. Steil ◽  
C. Brühl ◽  
H. Tost ◽  
J. Lelieveld

Abstract. The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components, such as absorbing black carbon and, predominantly scattering sulfates. Using a new column version of the aerosol optical properties and radiative-transfer code of the ECHAM/MESSy atmospheric-chemistry–climate model (EMAC), we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT (AERosol OPTical properties) submodel, which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well-mixed aerosol is a good approximation for particles with a black-carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005, we calculate that the global aerosol direct radiative forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.


2012 ◽  
Vol 12 (10) ◽  
pp. 26401-26434 ◽  
Author(s):  
B. Scarnato ◽  
S. Vahidinia ◽  
D. T. Richard ◽  
T. W. Kirchstetter

Abstract. According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius) is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm) presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation). When BC is internally mixed with NaCl (100–300 nm in radius), strong depolarization features for near-VIS incident radiation are evident, such as a decrease in the intensity and multiple modes at different angles corresponding to different mixing states. DDSCAT, being flexible on the geometry and refractive index of the particle, can be used to study the effect of mixing state and complex morphology on optical properties of realistic BC aggregates. This study shows that DDSCAT predicts morphology and mixing state dependent optical properties that have been reported previously and are relevant to radiative transfer and climate modeling and interpretation of remote sensing measurements.


2020 ◽  
Author(s):  
Periklis Drakousis ◽  
Marios-Bruno Korras-Carraca ◽  
Hiren Jethva ◽  
Omar Torres ◽  
Nikos Hatzianastassiou

&lt;p&gt;Aerosol measurements are carried out worldwide in order to reduce the uncertainties about the impact of aerosols on climate. Over the past two decades, different methods (ground- or satellite-based) for measuring aerosol properties have been developed, covering a variety of approaches with different temporal and spatial scales, which can be considered complementary. Aerosol optical properties are essential for assessing the effects of aerosols on radiation and climate. Aerosol single scattering albedo (SSA), along with optical depth and asymmetry parameter, is one of the three key optical properties that are necessary for radiation transfer and climate models. At the same time, SSA strongly depends on different aerosol types, thus enabling the identification of these different aerosol particles. However, despite the strong need for aerosol SSA products with global and climatological coverage, and the significant progress in retrieving SSA from satellite measurements, the satellite SSA retrievals are still subjected to uncertainties.&lt;/p&gt;&lt;p&gt;In this study, we perform an evaluation of the OMAERUVd (PGE Version V1.8.9.1) daily L3 (1&amp;#176; x 1&amp;#176; latitude-longitude) aerosol SSA data, which are based on the enhanced two-channel OMAERUV algorithm that essentially uses the ultraviolet radiance data from Aura/Ozone Monitoring Instrument (OMI), through comparisons against daily SSA products from 541 globally distributed Aerosol Robotic Network (AERONET) stations for a 15-year period (2005-2019). The comparison is performed between the available OMAERUVd SSA data at 354 nm, 388 nm, and 500 nm, and the AERONET SSA data at 440 nm (or 443 nm). The comparison is made on an annual and seasonal basis in order to reveal possible seasonally dependent patterns, as well as on a climatological and a year-to-year basis. The statistical metrics, such as Coefficient of Correlation (R) and Bias, are computed for individual AERONET stations as well as for all stations. The effect of availability of common OMI and AERONET data pairs on the comparison is assessed by making comparisons when at least 10, 50 and 100 common pairs are available.&lt;/p&gt;&lt;p&gt;The results show that about 50% (75%) of OMI-AERONET matchups agree within the absolute difference of &amp;#177;0.03 (&amp;#177;0.05) for the 500 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA. The corresponding percentage for the 388 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA increases to 58% (81%), while the corresponding numbers for the 354 nm SSA OMI and the 440 nm (or 443 nm) AERONET are 43% (67%). It is found that in overall, OMI tends mainly to overestimate (underestimate) SSA for the 500 nm (354 nm) products in comparison to AERONET 440 nm (or 443 nm) with a total bias of 0.025 (-0.024), or 2.7% (2.6%) in relative percentage terms with respect to AERONET (mean AERONET value equal to 0.908), and an overall R value of 0.399 (0.386). At 388 nm, OMI tends to retrieve higher SSA over regions where biomass burning occurs, against lower SSA values elsewhere, with overall bias and R values equal to -0.002 (0.22%) and 0.395, respectively.&lt;/p&gt;


2005 ◽  
Vol 277-279 ◽  
pp. 929-934 ◽  
Author(s):  
H.K. Lee ◽  
Horst Baier ◽  
J.S. Park ◽  
Y.P. Lee ◽  
Youn Seoung Lee

The effects of grain-size in La0.7Ca0.3MnO3-δ (LCMO) system have been studied in connection with the magnetic and electronic properties. LCMO system prepared by the solid-state reaction was annealed in air at 1200, 1300 and 1400°C. The grain sizes of LCMO samples become larger with increasing of annealing temperature (TA ). The magnetization in LCMO samples increased while the coercive field decreased with increasing TA. The conductivity increased and the metal-insulator transition temperature TM-I decreased with increasing of TA. These physical properties are due to the oxygen deficiency caused by the increase of grain size. Finally, it was found that the grain size and the mechanical connection between grains play an important role in determining the electronic and magnetic properties.


2016 ◽  
Author(s):  
Matthew Toohey ◽  
Bjorn Stevens ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. The Easy Volcanic Aerosol (EVA) forcing generator produces stratospheric aerosol optical properties as a function of time, latitude, height and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport, and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Pre-calculated look up tables computed from Mie theory are used to produce wavelength dependent aerosol extinction, single scattering albedo and scattering asymmetry factor values. The structural form of EVA, and the tuning of its parameters, are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-time scale forcing reconstructions including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding, but internally self-consistent over any time-scale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.


2021 ◽  
Vol 21 (17) ◽  
pp. 12989-13010
Author(s):  
Baseerat Romshoo ◽  
Thomas Müller ◽  
Sascha Pfeifer ◽  
Jorge Saturno ◽  
Andreas Nowak ◽  
...  

Abstract. The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 µm2 for BCFA Dmob ranging from 24 to 810 nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmob > 100 nm. Therefore, while using the simplified core–shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE ≫ 1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be ≫ 1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing ΔFTOA (W m−2) decreases up to 61 % as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50 % in ΔFTOA was observed as the organic content of the particle increased up to 90 %. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the ΔFTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98 % for the cross sections, 97 % for single-scattering albedos (SSAs), and 82 % for the asymmetry parameter (g).


2019 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) to radiative forcing of the Arctic atmosphere, vertically-resolved measurements of the particle light scattering coefficient (Bsp) and light absorption coefficient (Bap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80oN. Here, relationships among vertically-distributed aerosol optical properties Bap, Bsp, and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9oN and 83.4oN from near the surface to 500 hPa. Airborne data collected during April, 2015, are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the GEOS-Chem-TOMAS model (Kodros et al., 2018) to increase our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for Bsp less than 15 Mm-1, which represent 98% of the observed Bsp, because the single scattering albedo (SSA) has a tendency to be lower at lower Bsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g-1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (9.5 m2 g-1 and 7.0 m2 g-1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC and possible differences in BC microphysics and morphologies between the observations and model. We present Bap and SSA based on the assumption that Bap is overestimated in the observations in addition to the assumption that the higher MAC is explained. Median values of the measured Bap, rBC and organic component of particles all increase by a factor of 1.8±0.1 going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics, and Bap agree with the near-surface measurements, but do not reproduce the higher values observed between 900 hPa and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Some discrepancies in the model may be due to the use of a relatively low imaginary refractive index of BC as well as by the ejection of biomass burning particles only into the boundary layer at sources. For the assumption of the higher observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of Bsp <15 Mm-1. The large uncertainties in measuring optical properties and BC as well as the large differences between measured and modelled values, here and in the literature, argue for improved measurements of BC and light absorption by BC as well as more vertical profiles of aerosol chemistry, microphysics, and other optical properties in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document