Sixty Years of Widespread Warming in the Southern Middle and High Latitudes (1957–2016)

2019 ◽  
Vol 32 (20) ◽  
pp. 6875-6898 ◽  
Author(s):  
Megan E. Jones ◽  
David H. Bromwich ◽  
Julien P. Nicolas ◽  
Jorge Carrasco ◽  
Eva Plavcová ◽  
...  

Abstract Temperature trends across Antarctica over the last few decades reveal strong and statistically significant warming in West Antarctica and the Antarctic Peninsula (AP) contrasting with no significant change overall in East Antarctica. However, recent studies have documented cooling in the AP since the late 1990s. This study aims to place temperature changes in the AP and West Antarctica into a larger spatial and temporal perspective by analyzing monthly station-based surface temperature observations since 1957 across the extratropical Southern Hemisphere, along with sea surface temperature (SST) data and mean sea level pressure reanalysis data. The results confirm statistically significant cooling in station observations and SST trends throughout the AP region since 1999. However, the full 60-yr period shows statistically significant, widespread warming across most of the Southern Hemisphere middle and high latitudes. Positive SST trends broadly reflect these warming trends, especially in the midlatitudes. After confirming the importance of the southern annular mode (SAM) on southern high-latitude climate variability, the influence is removed from the station temperature records, revealing statistically significant background warming across all of the extratropical Southern Hemisphere. Antarctic temperature trends in a suite of climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are then investigated. Consistent with previous work the CMIP5 models warm Antarctica at the background temperature rate that is 2 times faster than that observed. However, removing the SAM influence from both CMIP5 and observed temperatures results in Antarctic trends that differ only modestly, perhaps due to natural multidecadal variability remaining in the observations.

2021 ◽  
pp. 1-59
Author(s):  
Kevin M. Grise ◽  
Mitchell K. Kelleher

AbstractAn effective method to understand cloud processes and to assess the fidelity with which they are represented in climate models is the cloud controlling factor framework, in which cloud properties are linked with variations in large-scale dynamical and thermodynamical variables. This study examines how midlatitude cloud radiative effects (CRE) over oceans co-vary with four cloud controlling factors: mid-tropospheric vertical velocity, estimated inversion strength (EIS), near-surface temperature advection, and sea surface temperature (SST), and assesses their representation in CMIP6 models with respect to observations and CMIP5 models.CMIP5 and CMIP6 models overestimate the sensitivity of midlatitude CRE to perturbations in vertical velocity, and underestimate the sensitivity of midlatitude shortwave CRE to perturbations in EIS and temperature advection. The largest improvement in CMIP6 models is a reduced sensitivity of CRE to vertical velocity perturbations. As in CMIP5 models, many CMIP6 models simulate a shortwave cloud radiative warming effect associated with a poleward shift in the Southern Hemisphere (SH) midlatitude jet stream, an effect not present in observations. This bias arises because most models’ shortwave CRE are too sensitive to vertical velocity perturbations and not sensitive enough to EIS perturbations, and because most models overestimate the SST anomalies associated with SH jet shifts. The presence of this bias directly impacts the transient surface temperature response to increasing greenhouse gases over the Southern Ocean, but not the global-mean surface temperature. Instead, the models’ climate sensitivity is correlated with their shortwave CRE sensitivity to surface temperature advection perturbations near 40°S, with models with more realistic values of temperature advection sensitivity generally having higher climate sensitivity.


2014 ◽  
Vol 27 (3) ◽  
pp. 1336-1342 ◽  
Author(s):  
Michael Sigmond ◽  
John C. Fyfe

Abstract It has been suggested that the increase of Southern Hemisphere sea ice extent since the 1970s can be explained by ozone depletion in the Southern Hemisphere stratosphere. In a previous study, the authors have shown that in a coupled atmosphere–ocean–sea ice model the ozone hole does not lead to an increase but to a decrease in sea ice extent. Here, the robustness of this result is established through the analysis of models from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Comparison of the mean sea ice trends in CMIP3 models with and without time-varying stratospheric ozone suggests that ozone depletion is associated with decreased sea ice extent, and ozone recovery acts to mitigate the future sea ice decrease associated with increasing greenhouse gases. All available historical simulations with CMIP5 models that were designed to isolate the effect of time-varying ozone concentrations show decreased sea ice extent in response to historical ozone trends. In most models, the historical sea ice extent trends are mainly driven by historical greenhouse gas forcing, with ozone forcing playing a secondary role.


2021 ◽  
Author(s):  
Philipp Breul ◽  
Paulo Ceppi ◽  
Theodore Gordon Shepherd

Abstract. Climate models show a wide range of Southern Hemispheric jet responses to greenhouse gas forcing. One approach to constrain future jet response is by utilising the fluctuation-dissipation theorem (FDT) that links forced response to internal variability timescales, with the Southern Annular Mode (SAM) the most dominant mode of variability of the Southern Hemispheric jet. We show that stratospheric variability approximately doubles the SAM timescale during austral summer in both re-analysis data and models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). Using a simple barotropic model, we demonstrate how the enhanced SAM timescale subsequently leads to an overestimate of the forced jet response based on FDT, and introduce a method to correct for the stratospheric influence. Even after accounting for this influence, the SAM timescale cannot explain inter-model differences in the forced jet shift across CMIP5 models during austral summer, owing to other confounding factors.


2013 ◽  
Vol 26 (21) ◽  
pp. 8597-8615 ◽  
Author(s):  
Alexander Sen Gupta ◽  
Nicolas C. Jourdain ◽  
Jaclyn N. Brown ◽  
Didier Monselesan

Abstract Climate models often exhibit spurious long-term changes independent of either internal variability or changes to external forcing. Such changes, referred to as model “drift,” may distort the estimate of forced change in transient climate simulations. The importance of drift is examined in comparison to historical trends over recent decades in the Coupled Model Intercomparison Project (CMIP). Comparison based on a selection of metrics suggests a significant overall reduction in the magnitude of drift from phase 3 of CMIP (CMIP3) to phase 5 of CMIP (CMIP5). The direction of both ocean and atmospheric drift is systematically biased in some models introducing statistically significant drift in globally averaged metrics. Nevertheless, for most models globally averaged drift remains weak compared to the associated forced trends and is often smaller than the difference between trends derived from different ensemble members or the error introduced by the aliasing of natural variability. An exception to this is metrics that include the deep ocean (e.g., steric sea level) where drift can dominate in forced simulations. In such circumstances drift must be corrected for using information from concurrent control experiments. Many CMIP5 models now include ocean biogeochemistry. Like physical models, biogeochemical models generally undergo long spinup integrations to minimize drift. Nevertheless, based on a limited subset of models, it is found that drift is an important consideration and must be accounted for. For properties or regions where drift is important, the drift correction method must be carefully considered. The use of a drift estimate based on the full control time series is recommended to minimize the contamination of the drift estimate by internal variability.


2013 ◽  
Vol 9 (6) ◽  
pp. 6161-6178 ◽  
Author(s):  
L. Zhao ◽  
J. Xu ◽  
A. M. Powell Jr.

Abstract. Using the fifth Coupled Model Intercomparison Project (CMIP5) model simulations and two observational datasets, the surface temperature trends and their discrepancies have been examined. The temporal-spatial characteristics for the surface temperature trends are discussed. Different from a constant estimated linear trend for the entire simulation period of 1850–2012, a dynamical trend using running linear least squares fitting with the moving 10 yr time windows are calculated. The results show that the CMIP5 model simulations are generally in good agreement with the observational measurements for the global scale warming, but the temperature trends depend on the temporal change and the regional differences. Generally, contrary to the small discrepancies on the global scale, the large discrepancies are observed in the south- and north-polar regions and other sub-regions.


2015 ◽  
Vol 28 (13) ◽  
pp. 5254-5271 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Lorenzo M. Polvani

Abstract Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic. Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.


2013 ◽  
Vol 118 (2) ◽  
pp. 605-613 ◽  
Author(s):  
Paul J. Young ◽  
Amy H. Butler ◽  
Natalia Calvo ◽  
Leopold Haimberger ◽  
Paul J. Kushner ◽  
...  

2012 ◽  
Vol 5 (5) ◽  
pp. 1161-1175 ◽  
Author(s):  
H. Kurzke ◽  
M. V. Kurgansky ◽  
K. Dethloff ◽  
D. Handorf ◽  
S. Erxleben ◽  
...  

Abstract. A quasi-geostrophic model of Southern Hemisphere's wintertime atmospheric circulation with horizontal resolution T21 has been coupled to a global ocean circulation model with a resolution of 2° × 2° and simplified physics. This simplified coupled model reproduces qualitatively some features of the first and the second EOF of atmospheric 833 hPa geopotential height in accordance with NCEP data. The variability patterns of the simplified coupled model have been compared with variability patterns simulated by four complex state-of-the-art coupled CMIP5 models. The first EOF of the simplified model is too zonal and does not reproduce the right position of the centre of action over the Pacific Ocean and its extension to the tropics. The agreement in the second EOF between the simplified and the CMIP5 models is better. The total variance of the simplified model is weaker than the observational variance and those of the CMIP5 models. The transport properties of the Southern Ocean circulation are in qualitative accord with observations. The simplified model exhibits skill in reproducing essential features of decadal and multi-decadal climate variability in the extratropical Southern Hemisphere. Notably, 800 yr long coupled model simulations reveal sea surface temperature fluctuations on the timescale of several decades in the Antarctic Circumpolar Current region.


2019 ◽  
Vol 11 (24) ◽  
pp. 2949 ◽  
Author(s):  
Justyna Śliwińska ◽  
Monika Birylo ◽  
Zofia Rzepecka ◽  
Jolanta Nastula

The Gravity Recovery and Climate Experiment (GRACE) observations have provided global observations of total water storage (TWS) changes at monthly intervals for over 15 years, which can be useful for estimating changes in GWS after extracting other water storage components. In this study, we analyzed the TWS and groundwater storage (GWS) variations of the main Polish basins, the Vistula and the Odra, using GRACE observations, in-situ data, GLDAS (Global Land Data Assimilation System) hydrological models, and CMIP5 (the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 5) climate data. The research was conducted for the period between September 2006 and October 2015. The TWS data were taken directly from GRACE measurements and also computed from four GLDAS (VIC, CLM, MOSAIC, and NOAH) and six CMIP5 (FGOALS-g2, GFDL-ESM2G, GISS-E2-H, inmcm4, MIROC5, and MPI-ESM-LR) models. The GWS data were obtained by subtracting the model TWS from the GRACE TWS. The resulting GWS values were compared with in-situ well measurements calibrated using porosity coefficients. For each time series, the trends, spectra, amplitudes, and seasonal components were computed and analyzed. The results suggest that in Poland there has been generally no major TWS or GWS depletion. Our results indicate that when comparing TWS values, better compliance with GRACE data was obtained for GLDAS than for CMIP5 models. However, the GWS analysis showed better consistency of climate models with the well results. The results can contribute toward selection of an appropriate model that, in combination with global GRACE observations, would provide information on groundwater changes in regions with limited or inaccurate ground measurements.


2020 ◽  
Vol 32 (5) ◽  
pp. 408-424
Author(s):  
Oleksandr M. Evtushevsky ◽  
Volodymyr O. Kravchenko ◽  
Asen V. Grytsai ◽  
Gennadi P. Milinevsky

AbstractDifferences in the decadal trend in the winter surface temperature in the northern and southern Antarctic Peninsula have been analysed. Time series from the two stations Esperanza and Faraday/Vernadsky since the early 1950s are used. The two time series are strongly correlated only during the 1980s and 1990s when their variability and trends are associated with both the Niño-4 region and Southern Annular Mode impacts. The winter cooling at the Faraday/Vernadsky station contrasts with the winter warming at the Esperanza station during the period of 2006–17. The different temperature trends are accompanied by weak correlations between the temperatures at these two stations. Linearly congruent components of the station temperature trends in 2006–17 indicate a dominant contribution of Southern Annular Mode (tropical sea surface temperature anomalies) to warming (cooling) in the northern (southern) Peninsula. Distinctive impacts of climate modes are observed in combination with the recent deepening of the negative sea-level pressure anomaly to the west of the peninsula and the related change in the zonal and meridional wind components. These factors apparently contribute to the occurrence of the boundary that crosses the peninsula and divides it into sub-regions with warming and cooling.


Sign in / Sign up

Export Citation Format

Share Document