Wintertime precipitation over the Australian Snowy Mountains: Observations from an Intensive Field Campaign 2018

Author(s):  
Luis Ackermann ◽  
Yi Huang ◽  
Steven Siems ◽  
Michael Manton ◽  
Francisco Lang ◽  
...  

AbstractUnderstanding the key dynamical and microphysical mechanisms driving precipitation in the Snowy Mountains region of southeast Australia, including the role of orography, can help improve precipitation forecasts, which is of great value for efficient water management. An intensive observation campaign was carried out during the 2018 austral winter, providing a comprehensive range of ground-based observations across the Snowy Mountains. We used data from three vertically pointing rain radars, cloud radar, a PARSIVEL disdrometer, and a network of 76 pluviometers. The observations reveal that all of the precipitation events were associated with cold front passages. About half accumulated during the frontal passage associated with deep, fully glaciated cloud tops; while the rest occurred in the post-frontal environment and was associated with clouds with supercooled liquid water (SLW) tops. About three quarters of the accumulated precipitation were observed under blocked conditions, likely associated with blocked stratiform orographic enhancement. Specifically, more than a third of the precipitation resulted from moist cloudless air being lifted over stagnant air, upwind from the barrier, creating SLW-top clouds. These SLW-clouds then produced stratiform precipitation mostly over the upwind slopes and mountain tops, with hydrometeors reaching the mountain tops mostly as rimed snow. Two precipitation events were studied in detail, which showed that during unblocked conditions, orographic convection invigoration and unblocked stratiform enhancement were the two main mechanisms driving the precipitation; with the latter being more prevalent after the frontal passage. During these events, ice particle growth was likely dominated by vapor deposition and aggregation during the frontal periods, while riming dominated during the post-frontal periods.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


2011 ◽  
Vol 24 (9) ◽  
pp. 2405-2418 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton

Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 observations from the Terra satellite are used to create a 3-yr climatology of cloud-top phase over a section of the Southern Ocean (south of Australia) and the North Pacific Ocean. The intent is to highlight the extensive presence of supercooled liquid water over the Southern Ocean region, particularly during summer. The phase of such clouds directly affects the absorbed shortwave radiation, which has recently been found to be “poorly simulated in both state-of-the-art reanalysis and coupled global climate models” (Trenberth and Fasullo). The climatology finds that supercooled liquid water is present year-round in the low-altitude clouds across this section of the Southern Ocean. Further, the MODIS cloud phase algorithm identifies very few glaciated cloud tops at temperatures above −20°C, rather inferring a large portion of “uncertain” cloud tops. Between 50° and 60°S during the summer, the albedo effect is compounded by a seasonal reduction in high-level cirrus. This is in direct contrast to the Bering Sea and Gulf of Alaska. Here MODIS finds a higher likelihood of observing warm liquid water clouds during summer and a reduction in the relative frequency of cloud tops within the 0° to −20°C temperature range. As the MODIS cloud phase product has limited ability to confidently identify cloud-top phase between −5° and −25°C, future research should include observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and other space-based sensors to help with the classification within this temperature range. Further, multiregion in situ verification of any remotely sensed observations is vital to further understanding the cloud phase processes.


2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.


2021 ◽  
Author(s):  
Teresa Vogl ◽  
Martin Radenz ◽  
Heike Kalesse-Los

<p>Cloud radar Doppler spectra contain vertically highly resolved valuable information about the hydrometeors present in the cloud. A mixture of different hydrometeor types can lead to several peaks in the Doppler spectrum due to their different fall speeds, giving a hint about the size/ density/ number of the respective particles. Tools to separate and interpret peaks in cloud radar Doppler spectra have been developed in the past, but their application is often limited to certain radar settings, or the code not freely available to other users.</p> <p>We here present the effort of joining two methods, which have been developed and published (Radenz et al., 2019; Kalesse et al., 2019) with the aim to make them insensitive to instrument type and settings, and available on GitHub, and applicable to all cloud radars which are part of the ACTRIS CloudNet network.</p> <p>A supervised machine learning peak detection algorithm (PEAKO, Kalesse et al., 2019) is used to derive the optimal parameters to detect peaks in cloud radar Doppler spectra for each set of instrument settings. In the next step, these parameters are used by peakTree (Radenz et al., 2019), which is a tool for converting multi-peaked (cloud) radar Doppler spectra into a binary tree structure. PeakTree yields the (polarimetric) radar moments of each detected peak and can thus be used to classify the hydrometeor types. This allows us to analyze Doppler spectra of different cloud radars with respect to, e.g. the occurrence of supercooled liquid water or ice needles/columns with high linear depolarisation ratio (LDR).</p>


2021 ◽  
Author(s):  
Oliver Branch ◽  
Andreas Behrendt ◽  
Osama Alnayef ◽  
Florian Späth ◽  
Thomas Schwitalla ◽  
...  

<p>We present exciting Doppler lidar and cloud radar measurements from a high-vantage mountain observatory in the hyper-arid United Arab Emirates (UAE) - initiated as part of the UAE Research Program for Rain Enhancement Science (UAEREP). The observatory was designed to study the clear-air pre-convective environment and subsequent convective events in the arid Al Hajar Mountains, with the overarching goal of improving understanding and nowcasting of seedable orographic clouds. During summer in the Al Hajar Mountains (June to September), weather processes are often complex, with summer convection being initiated by several phenomena acting in concert, e.g., interaction between sea breeze and horizontal convective rolls. These interactions can combine to initiate sporadic convective storms and these can be intense enough to cause flash floods and erosion. Such events here are influenced by mesoscale phenomena like the low-level jet and local sea breeze, and are constrained by larger-scale synoptic conditions.</p><p>The Doppler lidar and cloud radar were employed for approximately two years at a high vantage-point to capture valley wind flows and observe convective cells. The instruments were configured to run synchronized polar (PPI) scans at 0°, 5°, and 45° elevation angles and vertical cross-section (RHI) scans at 0°, 30°, 60, 90°, 120°, and 150° azimuth angles. Using this imagery, along with local C-band radar and satellite data, we were able to identify and analyze several convective cases. To illustrate our results, we have selected two cases under unstable conditions - the 5 and 6 September 2018. In both cases, we observed areas of low-level convergence/divergence, particularly associated with wind flow around a peak 2 km to the south-west of the observatory. The extension of these deformations are visible in the atmosphere to a height of 3 km above sea level. Subsequently, we observed convective cells developing at those approximate locations – apparently initiated because of these phenomena. The cloud radar images provided detailed observations of cloud structure, evolution, and precipitation. In both convective cases, pre-convective signatures were apparent before CI, in the form of convergence, wind shear structures, and updrafts.</p><p>These results have demonstrated the value of synergetic observations for understanding orographic convection initiation, improvement of forecast models, and cloud seeding guidance. The manuscript based on these results is now the subject of a peer review (Branch et al., 2021).</p><p> </p><p>Branch, O., Behrendt, Andreas Alnayef, O., Späth, F., Schwitalla, Thomas, Temimi, M., Weston, M., Farrah, S., Al Yazeedi, O., Tampi, S., Waal, K. de and Wulfmeyer, V.: The new Mountain Observatory of the Project “Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)” in the United Arab Emirates: First results on Convection Initiation, J. Geophys. Res.  Atmos., 2021. In review (submitted 23.11.2020).</p>


Author(s):  
Muhammad Naufal Razin ◽  
Michael M. Bell

AbstractHurricane Ophelia (2005) underwent an unconventional eyewall replacement cycle (ERC) as it was a Category 1 storm located over cold sea surface temperatures near 23°C. The ERC was analyzed using airborne radar, flight-level, and dropsonde data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) intensive observation period on 11 September 2005. Results showed that the spin-up of the secondary tangential wind maximum during the ERC can be attributed to the efficient convergence of absolute angular momentum by the mid-level inflow of Ophelia’s dominantly stratiform rainbands. This secondary tangential wind maximum strongly contributed to the azimuthal mean tangential wind field, which is conducive for increased low-level supergradient winds and corresponding outflow. The low-level supergradient forcing enhanced convergence to form a secondary eyewall. Ophelia provides a unique example of an ERC occurring in a weaker storm with predominantly stratiform rainbands, suggesting an important role of stratiform precipitation processes in the development of secondary eyewalls.


2007 ◽  
Vol 64 (10) ◽  
pp. 3542-3561 ◽  
Author(s):  
Oliver Fuhrer ◽  
Christoph Schär

Abstract Shallow orographic convection embedded in an unstable cap cloud can organize into convective bands. Previous research has highlighted the important role of small-amplitude topographic variations in triggering and organizing banded convection. Here, the underlying dynamical mechanisms are systematically investigated by conducting three-dimensional simulations of moist flows past a two-dimensional mountain ridge using a cloud-resolving numerical model. Most simulations address a sheared environment to account for the observed wind profiles. Results confirm that small-amplitude topographic variations can enhance the development of embedded convection and anchor quasi-stationary convective bands to a fixed location in space. The resulting precipitation patterns exhibit tremendous spatial variability, since regions receiving heavy rainfall can be only kilometers away from regions receiving little or no rain. In addition, the presence of banded convection has important repercussions on the area-mean precipitation amounts. For the experimental setup here, the gravity wave response to small-amplitude topographic variations close to the upstream edge of the cap cloud (which is forced by the larger-scale topography) is found to be the dominant triggering mechanism. Small-scale variations in the underlying topography are found to force the location and spacing of convective bands over a wide range of scales. Further, a self-sufficient mode of unsteady banded convection is investigated that does not dependent on external perturbations and is able to propagate against the mean flow. Finally, the sensitivity of model simulations of banded convection with respect to horizontal computational resolution is investigated. Consistent with predictions from a linear stability analysis, convective bands of increasingly smaller scales are favored as the horizontal resolution is increased. However, small-amplitude topographic roughness is found to trigger banded convection and to control the spacing and location of the resulting bands. Thereby, the robustness of numerical simulations with respect to an increase in horizontal resolution is increased in the presence of topographic variations.


2009 ◽  
Vol 66 (10) ◽  
pp. 2953-2972 ◽  
Author(s):  
Terence L. Kubar ◽  
Dennis L. Hartmann ◽  
Robert Wood

Abstract The importance of macrophysical variables [cloud thickness, liquid water path (LWP)] and microphysical variables (effective radius re, effective droplet concentration Neff) on warm drizzle intensity and frequency across the tropics and subtropics is studied. In this first part of a two-part study, Moderate Resolution Imaging Spectroradiometer (MODIS) optical and CloudSat cloud radar data are used to understand warm rain in marine clouds. Part II uses simple heuristic models. Cloud-top height and LWP substantially increase as drizzle intensity increases. Droplet radius estimated from MODIS also increases with cloud radar reflectivity (dBZ) but levels off as dBZ > 0, except where the influence of continental pollution is present, in which case a monotonic increase of re with drizzle intensity occurs. Off the Asian coast and over the Gulf of Mexico, re values are smaller (by several μm) and Neff values are larger compared to more remote marine regions. For heavy drizzle intensity, both re and Neff values off the Asian coast and over the Gulf of Mexico approach re and Neff values in more remote marine regions. Drizzle frequency, defined as profiles in which maximum dBZ > −15, increases dramatically and nearly uniformly when cloud tops grow from 1 to 2 km. Drizzle frequencies exceed 90% in all regions when LWPs exceed 250 g m−2 and Neff values are below 50 cm−3, even in regions where drizzle occurs infrequently on the whole. The fact that the relationship among drizzle frequency, LWP, and Neff is essentially the same for all regions suggests a near universality among tropical and subtropical regions.


2020 ◽  
Vol 29 (3) ◽  
pp. 229-248 ◽  
Author(s):  
Anna Ribas ◽  
Jorge Olcina ◽  
David Sauri

Purpose The purpose of this paper is to examine the role of high intensity precipitation events in increasing the vulnerability to floods in Mediterranean Spain. Precipitation intensity in this area appears to have augmented in the last two decades in association with warming trends of the Mediterranean Sea. At the same time, intense urbanization processes, occupying and transforming flood prone land, have produced an important increase in exposure. The main objective is to assess whether higher intensity precipitation and changing patterns in exposure aggravate vulnerability to floods. Design/methodology/approach In this paper, vulnerability is understood as the result of the interrelationships between exposure, sensitivity, impacts and adaptive capacity. Consequently, methods used involved the compilation and analysis of published and unpublished precipitation data, population and land use data, data on insurance claims, and media sources related to those variables. Findings Changes toward episodes of more intense precipitation in the expanding urban areas of Mediterranean Spain increase exposure but not necessarily vulnerability, at least in terms of human deaths. However, adaptative capacity needs to be formulated. Actions that attempt to absorb and eventually reuse flood flows (as the flood park in Alicante) appear to be more effective than traditional hydraulic solutions (as in Majorca). Originality/value The paper provides a systematic and coherent approach to vulnerability analysis taking into account the changing dynamics of its components. Especially, it signals the limits of current adaptive approaches to flooding and advocates for changes toward a more circular and less linear approach to urban drainage.


Sign in / Sign up

Export Citation Format

Share Document