Use of Near-Infrared–Mid-Infrared Dual-Wavelength Spectrometry to Obtain Two-Dimensional Difference Spectra of Sesame Oil as Inactive Drug Ingredient

2020 ◽  
pp. 000370282096919
Author(s):  
Masahiro Watari ◽  
Akifumi Nagamoto ◽  
Takuma Genkawa ◽  
Shigeaki Morita

The present study has investigated the transformation of sesame oil kept at low temperature during a definite period of time for refinement (called winterization) as an inactive drug ingredient by using two-dimensional difference spectra (2D-DS) analysis of spectra collected using a near-infrared (NIR) and mid-infrared (MIR) dual-wavelength spectrometer (NIR–MIR-DWS). The NIR and MIR spectra were measured nearly simultaneously from samples of sesame oil before and after winterization. The difference spectrum analysis of the obtained NIR–MIR data elucidated that, after the winterization process, the absorbances at peaks attributed to C=O, C=C, and OH groups decrease while the absorbances arising from the main chain (CH2) increase. The result indicated the removal of lignan and the fatty acids with relatively short main chains. Moreover, sesame oil unwinterized was cooled from room temperature to near 1 ℃ and subsequently warmed to room temperature. And the cycle was repeated two times. Real-time monitoring during the cooling and warming processes were carried out using the NIR-MIR-DWS. The prediction results obtained from partial least square calibration model for the temperature suggests that there are subtle differences in the oil composition between the first cooling process and after the warming and cooling cycle. For the more detailed analysis, the 2D-DS method is proposed. The results of the analyses using 2D-DS revealed that the starting point of the transformation is around 15 ℃. It can be estimated that sesame oil is mainly transformed by the first cooling down. Moreover, it was implied that the structure of methylene (CH2) was significantly related to the modifications in sesame oil with temperature change. A series of experimental results elucidated that the winterization of sesame oil removed its impurities and stabilized its conditions. These results are probably the first report on the effect of the winterization process on sesame oil.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 261 ◽  
Author(s):  
Maria Marques ◽  
Ana Álvarez ◽  
Pilar Carral ◽  
Iris Esparza ◽  
Blanca Sastre ◽  
...  

Contents of soil organic carbon (SOC), gypsum, CaCO3, and quartz, among others, were analyzed and related to reflectance features in visible and near-infrared (VIS/NIR) range, using partial least square regression (PLSR) in ParLes software. Soil samples come from a sloping olive grove managed by frequent tillage in a gypsiferous area of Central Spain. Samples were collected in three different layers, at 0–10, 10–20 and 20–30 cm depth (IPCC guidelines for Greenhouse Gas Inventories Programme in 2006). Analyses were performed by C Loss-On-Ignition, X-ray diffraction and water content by the Richards plates method. Significant differences for SOC, gypsum, and CaCO3 were found between layers; similarly, soil reflectance for 30 cm depth layers was higher. The resulting PLSR models (60 samples for calibration and 30 independent samples for validation) yielded good predictions for SOC (R2 = 0.74), moderate prediction ability for gypsum and were not accurate for the rest of rest of soil components. Importantly, SOC content was related to water available capacity. Soils with high reflectance features held c.a. 40% less water than soils with less reflectance. Therefore, higher reflectance can be related to degradation in gypsiferous soil. The starting point of soil degradation and further evolution could be established and mapped through remote sensing techniques for policy decision making.


2017 ◽  
Vol 72 (2) ◽  
pp. 288-296 ◽  
Author(s):  
Michał Kwaśniewicz ◽  
Mirosław A. Czarnecki

Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH3, CH2, and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.


2020 ◽  
Vol 8 (20) ◽  
pp. 6659-6666 ◽  
Author(s):  
Yun Li ◽  
Jingying Liu ◽  
Xin Su ◽  
Qingdong Ou ◽  
Zhichen Wan ◽  
...  

Here we demonstrate a room temperature, high performance broadband photodetector based on van der Waals magnetic material CrSiTe3 that can efficiently detect both soft X-rays and light in the near-infrared (NIR) and visible wavelength ranges.


1992 ◽  
Vol 46 (3) ◽  
pp. 420-429 ◽  
Author(s):  
F. E. Barton ◽  
D. S. Himmelsbach ◽  
J. H. Duckworth ◽  
M. J. Smith

A novel approach, utilizing a two-dimensional (2D) statistical correlation of mid- and near-infrared spectra, is presented as a means to assist with qualitative spectral interpretation. The method utilizes cross-correlation by least-squares to assess changes in both regions that result from changes in sample composition. The technique has been applied to complex agricultural samples that differ in wax (cuticle), carbohydrate, protein, and lignin content. Dispersive near-infrared (NIR) and interferometric mid-infrared (FT-IR) diffuse reflectance spectra were obtained on each of the samples, and point-for-point 2D cross-correlation was obtained. The technique permits the correlation of the combination and overtone region of the NIR to the fundamental vibrations in the mid-infrared (MIR) region. This allows the determination of the most probable source of NIR signals and verification of the “real” information content of the purely statistically derived signals whose intensities currently are used for quantitative analysis in this spectral region.


2003 ◽  
Vol 57 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Peter Snoer Jensen ◽  
Jimmy Bak ◽  
Stefan Andersson-Engels

Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000–950 cm−1 were measured in the temperature range 30–42 °C in steps of 2 °C. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmission cell controlled within 0.02 °C. Pathlengths of 50 μm and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37 °C water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between. On the basis of these spectra, prospects for and limitations on data analysis for infrared diagnostic methods are discussed. As an example, the absorptive properties of glucose were studied in the same temperature range in order to determine the effect of temperature on the spectral shape of glucose. The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Chaoyue Liu ◽  
Jingshu Guo ◽  
Laiwen Yu ◽  
Jiang Li ◽  
Ming Zhang ◽  
...  

AbstractTwo-dimensional materials (2DMs) have been used widely in constructing photodetectors (PDs) because of their advantages in flexible integration and ultrabroad operation wavelength range. Specifically, 2DM PDs on silicon have attracted much attention because silicon microelectronics and silicon photonics have been developed successfully for many applications. 2DM PDs meet the imperious demand of silicon photonics on low-cost, high-performance, and broadband photodetection. In this work, a review is given for the recent progresses of Si/2DM PDs working in the wavelength band from near-infrared to mid-infrared, which are attractive for many applications. The operation mechanisms and the device configurations are summarized in the first part. The waveguide-integrated PDs and the surface-illuminated PDs are then reviewed in details, respectively. The discussion and outlook for 2DM PDs on silicon are finally given.


Author(s):  
Lei Kong ◽  
Yang Mi ◽  
Weizheng Liang ◽  
Sheng-Nian Luo

Near-infrared (NIR) micro/nanolasers are attractive for their potential in biological and nonlinear optics applications. Despite the great advances, challenge remains due to low quantum efficiency and small exciton binding energy....


Sign in / Sign up

Export Citation Format

Share Document