Optimum design parameters and mechanical properties of polymeric nanocomposites using NSGA-II optimization method

2020 ◽  
pp. 002199832096077
Author(s):  
Mahlatse Rabothata ◽  
Jacob Muthu ◽  
Leon Wegner

The aim of this work was to develop a method for optimizing both the design parameters and the mechanical properties of polymer-based nanocomposites using multi-objective optimization (MOO) methods. The objective was to maximize both the elastic modulus and the tensile strength of nanocomposites simultaneously by varying the design parameters. The Ji and Zare models were selected as the objective functions for the elastic modulus and tensile strength of polymer nanocomposites, respectively. For this purpose, the NSGA-II approach implemented in MATLAB was used to obtain optimal solutions of the design variables. The optimization model was able to successfully find optimum solutions of the design variables and the overall optimization results were found to be in good agreement with the available published data. In addition, the proposed optimization model was found to be sufficiently accurate in finding the optimum values of the design variables for improving the mechanical properties of nanocomposites.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2021 ◽  
Vol 13 (9) ◽  
pp. 1812-1819
Author(s):  
Na-Na Yang ◽  
Hao-Rui Liu ◽  
Ning Mi ◽  
Qi Zhou ◽  
Li-Qun He ◽  
...  

Stereolithography (SLA)-manufactured parts behave with anisotropic properties due to the varying interface orientations generated by the layer-based manufacturing process. Part build orientation is a very important factor of anisotropic mechanical properties. In this paper, the build orientation experiment was designed to study the anisotropic behaviour of the mechanical properties of the SLA parts based on the orientation relationship between the force and the layer. The results show that there are obvious brittle characteristics on the fracture surface of the specimens and microcracks perpendicular to the direction of the layer distributed on the side of the fracture. The mechanical properties under brittle fracture have different degrees of sensitivity to the build orientation. Among all the build orientations, whether a specimen is built flat or on an edge shows obvious difference in tensile strength, and the relative range distribution reaches 35%. The changes in elastic modulus and the elongation at break are the most obvious in different angles relative to the XY plane, and the relative range distribution reaches 62% and 56% respectively. In all the build orientations designed, the tensile strength is the largest when it is placed on the edge at 0° with Y-axis in the XY plane, the elastic modulus is the largest when it was placed vertically, and the elongation at break is the largest when it is placed flat at 45° with Y-axis in the XY plane.


2021 ◽  
Author(s):  
Wenchang Zhang ◽  
Yingjie Xu ◽  
Xinyu Hui ◽  
Weihong Zhang

Abstract This paper develops a multi-objective optimization method for the cure of thick composite laminates. The purpose is to minimize the cure time and maximum temperature overshoot in the cure process by designing the cure temperature profile. This method combines the finite element based thermo-chemical coupled cure simulation with the non-dominated sorting genetic algorithm-II (NSGA-II). In order to investigate the influence of the number of dwells on the optimization result, four-dwell and two-dwell temperature profiles are selected for the design variables. The optimization method obtains successfully the Pareto optimal front of the multi-objective problem in thick and ultra-thick laminates. The result shows that the cure time and maximum temperature overshoot are both reduced significantly. The optimization result further illustrates that the four-dwell cure profile is more e ective than the two-dwell, especially for the ultra-thick laminates. Through the optimization of the four-dwell profile, the cure time is reduced by 51.0% (thick case) and 30.3% (ultra-thick case) and the maximum temperature overshoot is reduced by 66.9% (thick case) and 73.1% (ultra-thick case) compared with the recommended cure profile. In addition, Self-organizing map (SOM) is employed to visualize the relationships between the design variables with respect to the optimization result.


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


Sign in / Sign up

Export Citation Format

Share Document