MRPL53, a New Candidate Gene for Orofacial Clefting, Identified Using an eQTL Approach

2017 ◽  
Vol 97 (1) ◽  
pp. 33-40 ◽  
Author(s):  
C. Masotti ◽  
L.A. Brito ◽  
A.C. Nica ◽  
K.U. Ludwig ◽  
K. Nunes ◽  
...  

A valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.

2018 ◽  
Vol 115 (50) ◽  
pp. E11701-E11710 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Haiyin Chen-Harris ◽  
Oleg Mayba ◽  
Steve Lianoglou ◽  
Arthur Wuster ◽  
...  

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti–PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Gillian Cowan ◽  
Andrew J Childs ◽  
Richard A Anderson ◽  
Philippa T K Saunders

The somatic (Sertoli cell (SC), Leydig cell (LC), and peritubular myoid (PTM) cell) cells play key roles in development of the fetal testis. We established monolayer cultures from second trimester human testes and investigated the pattern of expression of cell-lineage characteristic mRNAs. Expression of some SC-associated genes (SRY, SOX9, WT1, GATA4, and SF1) was detectable up to and including passage 3 (P3), while others (anti-Müllerian hormone; desert hedgehog) present prior to dissociation were not expressed in the cultured cells. Transcripts encoding the androgen receptor were expressed but addition of dihydrotestosterone (DHT) had no impact on expression of mRNAs expressed in SC or LC. Total concentrations of mRNAs encoding smooth muscle actin (ACTA2) and desmin increased from P1 to P3; an increasing proportion of the cells in the cultures were immunopositive for ACTA2 consistent with proliferation/differentiation of PTM cells. In conclusion, somatic cell monolayer cultures were established from human fetal testes; these cultures could form the basis for future studies based on isolation of purified populations of somatic cells and manipulation of gene expression that is difficult to achieve with organ culture systems. Our results suggest that fetal SC do not maintain a fully differentiated phenotype in vitro, yet PTM (ACTA2 positive) cells readily adapt to monolayer culture conditions in the presence of DHT. This culture system provides an opportunity to study the impact of regulatory factors on gene expression in PTM cells, a population thought to play a key role in mediating androgen action within the developing testis.


2020 ◽  
Author(s):  
Michelle D. Catalina ◽  
Prathyusha Bachali ◽  
Anthony E. Yeo ◽  
Nicholas S. Geraci ◽  
Michelle A. Petri ◽  
...  

AbstractGene expression signatures can stratify patients with heterogeneous diseases, such as Systemic Lupus Erythematosus (SLE), yet understanding the contributions of ancestral background to this heterogeneity is not well elucidated. We hypothesized that ancestry would significantly influence gene expression signatures and measured 34 gene modules in 1566 SLE patients of african (AA), european (EA) or native american (NAA) ancestry to determine the impact of ancestry on gene expression. Healthy subject ancestry-specific gene expression provided the transcriptomic background upon which the SLE patient signatures were built. Although standard therapy affected every gene signature, and significantly increased myeloid cell signatures, logistic regression analysis determined that ancestral background significantly changed 23/34 gene signatures. Additionally, the strongest association to gene expression changes was autoantibodies and this also had etiology in ancestry; the AA predisposition to have both RNP and dsDNA autoantibodies compared to EA predisposition to have only antidsDNA. A machine learning approach was used to determine a gene signature characteristic to distinguish AA SLE and was most influenced by genes characteristic of the perturbed B cell axis in AA SLE patients.


2021 ◽  
Author(s):  
Deborah Weighill ◽  
Marouen Ben Guebila ◽  
Kimberly Glass ◽  
John Quackenbush ◽  
John Platig

AbstractThe majority of disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding and the alteration of downstream gene expression. Identifying how a person’s genotype affects their individual gene regulatory network has the potential to provide important insights into disease etiology and to enable improved genotype-specific disease risk assessments and treatments. However, the impact of genetic variants is generally not considered when constructing gene regulatory networks. To address this unmet need, we developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network (GRN) for each individual in a study population by using message passing to integrate genotype-informed TF motif predictions - derived from individual genotype data, the predicted effects of variants on TF binding and gene expression, and TF motif predictions - with TF protein-protein interactions and gene expression. Comparing EGRET networks for two blood-derived cell lines identified genotype-associated cell-line specific regulatory differences which were subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential TF binding from ChIP-seq. In addition, EGRET GRNs for three cell types across 119 individuals captured regulatory differences associated with disease in a cell-type-specific manner. Our analyses demonstrate that EGRET networks can capture the impact of genetic variants on complex phenotypes, supporting a novel fine-scale stratification of individuals based on their genetic background. EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io).


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 190-190
Author(s):  
Francesca Battaglin ◽  
Yi Xiao ◽  
Joshua Millstein ◽  
Andreas Seeber ◽  
Hiroyuki Arai ◽  
...  

190 Background: Wnt signaling deregulation is a primary driver of colorectal carcinogenesis. RNF43 is a key suppressor of Wnt activation while R-Spodin inhibits RNF43 activity. RNF43 mutations are associated with the serrated neoplasia pathway, BRAF mutation and MSI. We hypothesized that genetic variants in the R-Spodin/RNF43 complex and corresponding genes expression levels may predict cetuximab efficacy in mCRC pts. Methods: Genomic DNA from blood samples of pts enrolled in the randomized FIRE-3 trial was genotyped through the OncoArray, a custom array manufactured by Illumina. The impact on outcome of 17 functional SNPs within RNF43/ ZNRF3, LGR4/5 and RSPO1/2/3 was analyzed in 129 pts treated with first-line FOLFIRI/cet and 107 pts treated with FOLFIRI/bevacizumab (bev). Gene expression levels were measured from tumor tissue samples from 102 pts in the cet arm by HTG EdgeSeq Oncology Biomarker Panel. False discovery rate (FDR) for gene expression analysis was computed using the Benjamini-Hochberg approach (significant Q < 0.1). Results: In the cet cohort, pts with the C/C genotype of ZNRF3 rs132531 had significantly shorter overall survival compared to any T allele carriers (mOS: 20.3 vs 52 mo) in both univariable (HR 3.61, 95% CI 1.65-7.88, P < .001) and multivariable analysis (adjusted P = .01). Conversely, RSPO1 rs4652964 any G allele carriers showed increased tumor response (TR) rates compared to the A/A genotype (83 vs 66 %, P = .04). These associations were not observed in bev arm. Lower gene expression levels of RNF43 were associated with shorter PFS in pts with right-sided tumors receiving FOLFIRI/cet ( P = .006, Q < 0.1). RSPO1 expression levels were also associated with TR in the same subgroup (70 vs 10% in high vs low; P = .001, Q < .05). RNF43 expression was associated with TR in pts with left-sided tumors (82% in high vs 58% in low, P = .014, Q = 0.1). Conclusions: Our results provide the first evidence that germline polymorphisms and tumor gene expression levels of RNF43/ ZNRF3 and RSPO1 may have a predictive value in mCRC pts receiving first-line cetuximab-based treatment and contribute to modulate anti-EGFRs activity.


Author(s):  
Kirsten A. Koenig

The chapter presents results from a qualitative phenomenological heuristic study of the perceptions of historical trauma across Native American nations. Historical trauma has been established as a by-product of cultural and physical suppression. Cultural psychology details the impact of an individual's culture on the psychological development of the individual. Therefore, by examining the change to the culture that resulted in historical trauma, determination could be made regarding how the individual was impacted. This research addressed these contentions by interviewing Native American persons from the Eastern and Northern nations of North America and Canada and determined how historical trauma had influenced their psychological development via symptoms they experienced. The research identified several areas that differed from the extant literature regarding the Eastern and Northern nations.


2020 ◽  
Author(s):  
Zhan Qi ◽  
Christophe Jung ◽  
Peter Bandilla ◽  
Claudia Ludwig ◽  
Mark Heron ◽  
...  

SUMMARYThe core promoter, the region immediately surrounding the transcription start site, plays a central role in setting metazoan gene expression levels, but how exactly it ‘computes’ expression remains poorly understood. To dissect core promoter function, we carried out a comprehensive structure-function analysis to measure synthetic promoters’ activities, with and without an external stimulus (hormonal activation). By using robotics and a dual-luciferase reporter assay, we tested ∼3000 mutational variants representing 19 different Drosophila melanogaster promoter architectures. We explored the impact of different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, positioning, and flanking sequences. We observe strong effects of the mutations on activity, and a linear combination of the individual motif features can largely account for the combinatorial effects on core promoter activity. Our findings shed new light on the quantitative assessment of gene expression, a fundamental process in all metazoans.


2020 ◽  
Author(s):  
Tisha Melia ◽  
David J. Waxman

AbstractSex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many lncRNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.Author summaryMale-female differences in liver gene expression confer sex differences in many biological processes relevant to health and disease, including lipid and drug metabolism and liver disease susceptibility. While the role of hormonal factors, most notably growth hormone, in regulating hepatic sex differences is well established, little is known about how autosomal genetic factors impact sex differences on an individual basis. Here, we harness the power of mouse genetics provided by the Diversity Outbred mouse model to discover significant genome-wide associations between genetic variants and sex-specific liver gene expression. Remarkably, we found that autosomal expression quantitative trait loci with a strong sex-bias account for the loss or gain of sex-specific expression of more than 200 autosomal genes seen across eight founder mice strains. Genetic associations with sex-specific genes were enriched for sex-biased and growth hormone-dependent regulatory regions harboring strain-specific genetic variants. Co-regulated gene clusters identified by overlapping regulatory regions included highly correlated genes from different chromosomes. These findings reveal the extensive regulatory role played by autosomal genetic variants, working in tandem with growth hormone signaling pathways, in the transcriptional control of sex-biased genes, many of which have been implicated in sex differential outcomes in liver metabolism and disease susceptibility.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3595-3595
Author(s):  
Francesca Battaglin ◽  
Shu Cao ◽  
Alberto Puccini ◽  
Ryuma Tokunaga ◽  
Madiha Naseem ◽  
...  

3595 Background: PD is one of the most common age-related neurodegenerative disorders. Large epidemiological studies have consistently reported a reduced risk of CRC in PD patients (pts), but the biology behind this evidence is unclear. The methylation status of SNCA, one of the causal PD genes, has been identified as a tool for CRC screening and early diagnosis when detected in stool samples, and alterations in core PD genes are prevalent across human malignancies including CRC. Methods: The impact on outcome of 13 SNPs within 6 core PD genes ( SNCA, PRKN, UCHL1, PINK1, DJ-1, LRRK2) was analyzed in pts enrolled in the randomized FIRE-3 trial. Genomic DNA from blood samples of pts treated with first-line FOLFIRI-cetuximab (cet, n = 129) and FOLFIRI-bevacizumab (bev, n = 107) was genotyped through the OncoArray, a custom array manufactured by Illumina. Gene expression levels were measured from 102 tumor samples of pts in the cet arm by HTG EdgeSeq Oncology Biomarker Panel. Results: In the cet cohort, pts carrying the G/G variants of SNCA rs356165 and rs2736990 had significantly shorter mOS (30 vs 41.1 mo) compared to any A genotype in both uni- and multivariable analysis (adjusted P[ Padj] = .047 and .042, respectively). LRKK2 rs3761863 T/T allele carriers showed shorter mPFS (9.5 vs 13.3 mo, Padj = .01), while rs11564148 any A carriers had longer mPFS (14.2 vs 10.2 mo, Padj = .01) compared to reference genotypes. LRKK2 rs11564148 any A carriers also showed longer mOS in multivariable analysis (43.7 vs 33.2 mo, Padj = .044). Any C allele carriers of PINK1 rs1043424 showed longer mPFS in uni- and multivariable analysis ( Padj < .001). No significant interaction was found with gender, tumor location and RAS status. These associations were not observed in bev arm. High SNCA expression was associated with worse mPFS (log2 > 7.89, 5.9 vs 11.2 mo) and mOS (log2 > 7.68, 17.9 vs 31.1 mo) in FIRE-3 cet arm ( P < .05). Conclusions: We provide the first evidence that gene expression and genetic variants in PD genes may have a predictive value in mCRC pts receiving first-line cetuximab-based treatment. Our findings open new perspectives on the role of PD genes in CRC biology warranting further investigation.


Nature ◽  
2017 ◽  
Vol 550 (7675) ◽  
pp. 239-243 ◽  
Author(s):  
Xin Li ◽  
◽  
Yungil Kim ◽  
Emily K. Tsang ◽  
Joe R. Davis ◽  
...  

Abstract Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk1,2,3,4. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants1,5. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles1,6,7, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues8,9,10,11, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release12. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.


Sign in / Sign up

Export Citation Format

Share Document