scholarly journals Entamoeba gingivalis Exerts Severe Pathogenic Effects on the Oral Mucosa

2021 ◽  
pp. 002203452110044
Author(s):  
X. Bao ◽  
J. Weiner ◽  
O. Meckes ◽  
H. Dommisch ◽  
A.S. Schaefer

The protozoan Entamoeba gingivalis colonizes the healthy oral mucosa with a prevalence of 15%. Colonization can be asymptomatic, and it is considered not pathogenic. However, it is able to invade lacerated oral mucosa, where it ingests fragments of live cells, suggesting pathogenous potential. Here, we characterized the transcriptomes of gingival cells after infection with E. gingivalis using RNA sequencing and observed pathogen interaction with the epithelial monolayer barrier by scanning electron microscopy. In epithelial and fibroblast cells, strongest differential expression showed gene set “chemokines and inflammatory molecules in myeloid cells” (area under the curve [AUC] = 0.9, effect size 5.15, adjusted P = 3.1 × 10−19) and “cell cycle and growth arrest” (AUC = 0.91, effect size = 4.56, adjusted P = 4.8 × 10−9), respectively. The most upregulated genes were TNF (fold change 430) and IL8 (fold change 359) in epithelial cells and ZN331 (fold change 18) in fibroblasts. We showed that E. gingivalis killed live epithelial cells by trogocytosis, demonstrating strong pathogenic potential.

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1904
Author(s):  
Xiaolei Lin ◽  
Hongzhe Li ◽  
Tianke Yang ◽  
Xin Liu ◽  
Fan Fan ◽  
...  

To gain insight into the aetiology of posterior subcapsular congenital cataract from the perspective of transcriptional changes, we conducted an mRNA sequencing analysis of the lenses in posterior subcapsular congenital cataract patients and in normal children. There were 1,533 differentially expressed genes from 19,072 genes in the lens epithelial cells of the posterior subcapsular congenital cataract patients compared to in the normal controls at a cut-off criteria of |log2 fold change| of >1 and a p-value of <0.05, including 847 downregulated genes and 686 upregulated genes. To further narrow down the DEGs, we utilised the stricter criteria of |log2 fold change| of >1 and an FDR value of <0.05, and we identified 551 DEGs, including 97 upregulated genes and 454 downregulated genes. This study also identified 1,263 differentially expressed genes of the 18,755 genes in lens cortex and nuclear fibres, including 646 downregulated genes and 617 upregulated genes. The downregulated genes in epithelial cells were significantly enriched in the structural constituent of lenses, lens development and lens fibre cell differentiation. After filtering the DEGs using the databases iSyTE and Cat-Map, several high-priority candidate genes related to posterior subcapsular congenital cataract such as GRIFIN, HTRA1 and DAPL1 were identified. The findings of our study may provide a deeper understanding of the mechanisms of posterior subcapsular congenital cataract and help in the prevention and treatment of this disease.


2016 ◽  
Vol 68 (5) ◽  
pp. 2105-2114 ◽  
Author(s):  
F. B. Russo ◽  
G. C. Pignatari ◽  
I. R. Fernandes ◽  
J. L. R. M. Dias ◽  
P. C. B. Beltrão-Braga
Keyword(s):  

2021 ◽  
Vol 22 (22) ◽  
pp. 12149
Author(s):  
Hector F. Pelaez-Prestel ◽  
Jose L. Sanchez-Trincado ◽  
Esther M. Lafuente ◽  
Pedro A. Reche

The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.


2022 ◽  
Author(s):  
Tom Johnson ◽  
Defne Saatci ◽  
Lahiru Handunnetthi

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57 , FDR = 0.049) and gestational day 17 (fold change = 1.97 , FDR = 0.0006). We also found that downregulated genes in GABAergic Rosehip interneurons were enriched among hypermethylated genes at gestational day 17 (fold change = 1.62, FDR= 0.03). Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


2021 ◽  
Vol 37 ◽  
pp. e37015
Author(s):  
Osvaldo Tadeu Da Silva Junior ◽  
Gustavo Marinho do Nascimento ◽  
Giovane Henrique da Silva Nishioka ◽  
Anderson Polesel Batista ◽  
Jose Alexandre Curiacos ◽  
...  

The present study verified the effect of a concurrent training (CT) session in different orders, Strength + Endurance (SE) and Endurance + Strength (ES), on the glycemic control. The crossover study included 20 young men, 21.80 ± 2.90 years, IMC ≥ 23 kg/m2, 24.83 ± 3.68% of fat, who performed both CT sessions separated by 72 h. Capillary glycemia was measured at pre, immediately post the end of each exercise session, and during the recovery period at 30, 60, and 90 minutes. The comparisons were performed using Two-way ANOVA (order and time), paired test-t for the area under the curve, as well as Cohen’s d effect size. There was effect of exercise order (F = 5.973; p = 0.03), effect of time (F = 18.345; p = 0.001) and interaction between order and time (F = 2.835; p = 0.03). The area under the curve presented a significant reduction (p = 0.03, effect size = 0.51, moderate). The area under the curve was smaller in SE, as well as glucose concentrations at end and post 30 min of exercise, suggesting better efficiency in glycemic control compared to ES.


Author(s):  
Mei Zhong ◽  
Bing-peng Lin ◽  
Hong-bin Gao ◽  
Andrew J Young ◽  
Xin-hong Wang ◽  
...  

AbstractBackgroundLeading to a sustained epidemic spread with >2,000,000 confirmed human infections, including >100,000 deaths, COVID-19 was caused by SARS-CoV-2 and resulted in acute respiratory distress syndrome (ARDS) and sepsis, which brought more challenges to the patient’s treatment. The S-glycoprotein, which recognized as the key factor for the entry of SARS-CoV-2 into the cell, contains two functional domains: an ACE2 receptor binding domain and a second domain necessary for fusion of the coronavirus and cell membranes. FURIN activity, exposes the binding and fusion domains, is essential for the zoonotic transmission of SARS-CoV-2. Moreover, it has been reported that ACE2 is likely to be the receptor for SARS-CoV-2. In addition, FURIN enzyme and ACE2 receptor were expressed in airway epithelia, cardiac tissue, and enteric canals, which considered as the potential target organ of the virus. However, report about the expression of FURIN and ACE2 in oral tissues was limited.MethodsIn order to investigate the potential infective channel of new coronavirus in oral cavity, we analyze the expression of ACE2 and FURIN that mediate the new coronavirus entry into host cells in oral mucosa using the public single-cell sequence datasets. Furthermore, immunohistochemical staining experiment was performed to confirm the expression of ACE2 and FURIN in the protein level.ResultsThe bioinformatics results indicated the differential expression of ACE2 and FURIN on epithelial cells of different oral mucosal tissues and the proportion of FURIN-positive cells was obviously higher than that of ACE2-positive cells. IHC experiments revealed that both the ACE2-positive and FURIN-positive cells in the target tissues were mainly positioned in the epithelial layers, partly expressed in fibroblasts, which further confirm the bioinformatics results.ConclusionsBased on these findings, we speculated that SARS-CoV-2 could effectively invade oral mucosal cells though two possible routes: binding to the ACE2 receptor and fusion with cell membrane activated by FURIN protease. Our results indicated that oral mucosa tissues are susceptible to SARS-CoV-2, which provides valuable information for virus-prevention strategy in clinical care as well as daily life.


2019 ◽  
Vol 98 (10) ◽  
pp. 1150-1158 ◽  
Author(s):  
W. Chen ◽  
A. Alshaikh ◽  
S. Kim ◽  
J. Kim ◽  
C. Chun ◽  
...  

Oral mucosa provides the first line of defense against a diverse array of environmental and microbial irritants by forming the barrier of epithelial cells interconnected by multiprotein tight junctions (TJ), adherens junctions, desmosomes, and gap junction complexes. Grainyhead-like 2 (GRHL2), an epithelial-specific transcription factor, may play a role in the formation of the mucosal epithelial barrier, as it regulates the expression of the junction proteins. The current study investigated the role of GRHL2 in the Porphyromonas gingivalis ( Pg)–induced impairment of epithelial barrier functions. Exposure of human oral keratinocytes (HOK-16B and OKF6 cells) to Pg or Pg-derived lipopolysaccharides ( Pg LPSs) led to rapid loss of endogenous GRHL2 and the junction proteins (e.g., zonula occludens, E-cadherin, claudins, and occludin). GRHL2 directly regulated the expression levels of the junction proteins and the epithelial permeability for small molecules (e.g., dextrans and Pg bacteria). To explore the functional role of GRHL2 in oral mucosal barrier, we used a Grhl2 conditional knockout (KO) mouse model, which allows for epithelial tissue-specific Grhl2 KO in an inducible manner. Grhl2 KO impaired the expression of the junction proteins at the junctional epithelium and increased the alveolar bone loss in the ligature-induced periodontitis model. Fluorescence in situ hybridization revealed increased epithelial penetration of oral bacteria in Grhl2 KO mice compared with the wild-type mice. Also, blood loadings of oral bacteria (e.g., Bacteroides, Bacillus, Firmicutes, β- proteobacteria, and Spirochetes) were significantly elevated in Grhl2 KO mice compared to the wild-type littermates. These data indicate that Pg bacteria may enhance paracellular penetration through oral mucosa in part by targeting the expression of GRHL2 in the oral epithelial cells, which then impairs the epithelial barrier by inhibition of junction protein expression, resulting in increased alveolar tissue destruction and systemic bacteremia.


Author(s):  
Hao Xu ◽  
Liang Zhong ◽  
Jiaxin Deng ◽  
Jiakuan Peng ◽  
Hongxia Dan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document