Electromagnetic interference shielding with absorption-dominant performance of Ti3C2TX MXene/non-woven laminated fabrics

2021 ◽  
pp. 004051752110062
Author(s):  
Hengyu Zhang ◽  
Jianying Chen ◽  
Hui Ji ◽  
Ni Wang ◽  
Shuo Feng ◽  
...  

Electromagnetic interference (EMI)-shielding materials with remarkable shielding effectiveness (SE) based on dominant absorption are highly desirable, especially if they are also flexible and lightweight. Herein, we prepared MXene (Ti3C2TX, TX-=O,-OH,-F)-based lightweight and absorption-dominant EMI-shielding non-woven fabrics. In view of the porosity and soft properties of textiles, as well as the unique high conductivity and hydrophilicity of Ti3C2TX MXene, Ti3C2TX MXene was coated on the fiber skeleton of three different non-woven fabrics made from polyester, cotton, and calcium alginate. The conductive layer formed by Ti3C2TX MXene on the fiber led to heterogeneous interfaces. They improved the multiple reflection of electromagnetic waves among Ti3C2TX MXene sheets and then contributed to the attenuation of the electromagnetic waves. Among all the samples, calcium alginate/Ti3C2TX MXene reached a maximum SE of 25.26 dB at 12.4 GHz with the fabric thickness of 3.17 mm. Cotton/Ti3C2TX MXene achieved maximum SSEt (ratio of specific shielding effectiveness (SSE) to thickness) of 2301.95 dB cm2g−1 at 1.36 mm with a loading of Ti3C2TX MXene of only 5.77mg/cm3. Further, fabric thickness, layer number, conductivity, and substrate type were selected to analyze the EMI-shielding mechanism.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 933 ◽  
Author(s):  
Fang Ren ◽  
Zheng-Zheng Guo ◽  
Han Guo ◽  
Li-Chuan Jia ◽  
Yu-Chen Zhao ◽  
...  

In this work, we propose novel layer-structured polymer composites (PCs) for manipulating the electromagnetic (EM) wave transport, which holds unique electromagnetic interference (EMI) shielding features. The as-prepared PCs with a multilayered structure exhibits significant improvement in overall EMI shielding effectiveness (EMI SE) by adjusting the contents and distribution of electrical and magnetic loss fillers. The layer-structured PCs with low nanofiller content (5 wt % graphene nanosheets (GNSs) and 15 wt % Fe3O4) and a thickness of only 2 mm exhibited ultrahigh electrical conductivity and excellent EMI SE, reaching up to 2000 S/m and 45.7 dB in the X-band, respectively. The increased EMI SE of the layer-structured PCs was mainly based on the improved absorption rather than the reflection of electromagnetic waves, which was attributed to the “absorb-reflect-reabsorb” process for the incident electromagnetic waves. This work may provide a simple and effective approach to achieve new EMI shielding materials, especially for absorption-dominated EMI shielding.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting Wang ◽  
Wei-Wei Kong ◽  
Wan-Cheng Yu ◽  
Jie-Feng Gao ◽  
Kun Dai ◽  
...  

Highlights The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. Abstract It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels–Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.


2021 ◽  
pp. 095400832110645
Author(s):  
Karim Benzaoui ◽  
Achour Ales ◽  
Ahmed Mekki ◽  
Abdelhalim Zaoui ◽  
Boudjemaa Bouaouina ◽  
...  

The conventional electromagnetic interference (EMI) shielding materials are being gradually replaced by a new generation of supported conducting polymer composites (CPC) films due to their many advantages. This work presents a contribution on the effects of silane surface–modified flexible polypyrrole-silver nanocomposite films on the electromagnetic interference shielding effectiveness (EMI-SE). Thus, the UV-polymerization was used to in-situ deposit the PPy-Ag on the biaxial oriented polyethylene terephthalate (BOPET) flexible substrates whose surfaces were treated by 3-aminopropyltrimethoxysilane (APTMS). X-ray Photoelectron Spectroscopy (XPS) analyzes confirmed the APTMS grafting procedure. Structural, morphological, thermal, and electrical characteristics of the prepared films were correlated to the effect of substrate surface treatment. Thereafter, EMI-SE measurements of the elaborated films were carried out as per ASTM D4935 standard for a wide frequency band extending from 50 MHz to 18 GHz. The obtained results confirmed that the APTMS-treated BOPET film exhibit higher EMI shielding performance and better electrical characteristics compared to the untreated film. In fact, a 32% enhancement of EMI-SE was noted for the treated films compared to the untreated ones. Overall, these results put forward the role played by the surface treatment in strengthening the position of flexible PPy-Ag supported films as high-performance materials in electronic devices and electromagnetic interference shielding applications.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1657 ◽  
Author(s):  
Marek Neruda ◽  
Lukas Vojtech

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25–50 dB at 0.03–1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.


2021 ◽  
Author(s):  
Siyi Yan ◽  
Peng Li ◽  
Zhongshi Ju ◽  
He Chen ◽  
Jiangang Ma

Abstract Silver nanowire (AgNW) networks are promising transparent conducting materials for electromagnetic interference (EMI) shielding and diverse optoelectronic devices. However, the poor contact between adjacent AgNWs leads to low electrical conductivity and weak mechanical stability of AgNW networks, which are limiting the practical application of these electronics. Here we report an efficient strategy to improve the overall performance of AgNW networks, in which the AgNW networks are sandwiched between two layers of graphene films. The graphene films improve the contact of overlapped AgNWs and bridge the discrete AgNWs, and thus increase the conductivity of graphene/AgNWs/graphene (GAG) films. Microwave permittivity measurements together with mechanism analyses reveal that the graphene films can enhance the EMI shielding effectiveness of AgNW networks through offering extra conduction loss, multiple dielectric polarization centers and multi-reflection processes. As a result, the GAG film with an average transmittance of 88% exhibits a sheet resistance lower than 15 Ω sq− 1 and an EMI shielding effectiveness of 31 dB (in the frequency range of 8.2‒12.4 GHz) after repeated stretching and release at a strain of 40%. Such a total performance is superior to that of most of as-reported transparent conductors. The GAG films therefore show application potential in the age of Internet of Things that electromagnetic radiation pollutions are everywhere.


2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.


2021 ◽  
Vol 875 ◽  
pp. 160-167
Author(s):  
Muhammad Fayzan Shakir ◽  
Asra Tariq

Polymer nano composites based on poly vinyl chloride matrix were fabricated using polyaniline (PANI) and graphene nano platelets (GNP) as electrically conductive nano filler for the application of electromagnetic interference (EMI) shielding. DC conductivity was first evaluated by using cyclic voltammetry and found an increasing trend of electrical conductivity as PANI and GNP was added in PVC matrix that confirms the formation of electrically conductive network structure. Dielectric properties like dielectric constant, dielectric loss and AC conductivity were evaluated in frequency range of 100 Hz to 3 MHz that gives basic prediction for EMI shielding effectiveness. Vector Network Analyzer (VNA) was used to assess EMI shielding properties using coaxial cable method in 11GHz to 20GHz range and it was found that a maximum of 29 dB shielding was archived with the incorporation of 15 wt% of PANI in PVC. This value increased to 56 dB as 5 wt% GNP added in PVC/PANI 15 wt% blend. Interaction of matrix with filler, nature of filler and dispersion of filler in matrix are the key parameters for achieving high shielding effectiveness.


Sign in / Sign up

Export Citation Format

Share Document