Photo Taking Paradox: Contrasting Effects of Photo Taking on Travel Satisfaction and Revisit Intention

2020 ◽  
pp. 004728752091233
Author(s):  
Jacob C. Lee ◽  
Yuanyuan (Gina) Cui ◽  
Jungkeun Kim ◽  
Yuri Seo ◽  
Hyunji Chon

The present research establishes that taking photos has a paradoxical dual effect on travelers’ satisfaction and revisit intention. Across five empirical studies, we show that while taking photographs increases travelers’ satisfaction with an experience, it simultaneously decreases travelers’ intention to revisit the same experience. The increased psychological engagement induced by photo taking is the underlying mechanism behind this dual effect. Specifically, the greater engagement increases satisfaction with an experience, but it also makes it easier for travelers to remember the experience and, therefore, diminishes the perceived utility of revisiting the same experience. Hence, travelers are less likely to go back to a place if they have taken photographs of it during a visit. An intriguing implication arising from these findings is that while allowing photographs can be an effective policy to attract first-time travelers, prohibiting photography is more effective for encouraging revisits.

2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


Author(s):  
Yu-rong Zhu ◽  
Dan Zhang ◽  
Yang Gan ◽  
Fei-hu Zhang

<p>Silicon carbide (SiC) single crystals, along with sapphire and silicon, are one of most important substrates for high-brightness LED fabrications. Owing to extremely high hardness (Mohs&rsquo; scale of 9.5) and chemical inertness, the polishing rate of SiC with conventional chemical mechanical polishing (CMP) methods is not high, and surface scratches are also inevitable because of using slurry containing hard abrasives such as silica particles. Here artemisinin (Qinghaosu) crystals, very soft molecular solids, were found, for the first time to the best of our knowledge, to effectively polish SiC wafers even in pure water as demonstrated by proof-of-concept scratching experiments using atomic force microscopy (AFM). The underlying mechanism is attributed to activated oxidation of SiC by mechanically released reactive &middot;OH free radicals from the endoperoxide bridges. The preliminary results reported here have important implications for developing novel alternative green and scratch-free polishing methods for hard-brittle substrates including SiC and others.</p>


2020 ◽  
Author(s):  
Jianfeng Li ◽  
Shaoyu Hu ◽  
Song Hao ◽  
Shengjia Huang ◽  
Yi Qin ◽  
...  

Abstract Background The role of gene and pathway in recurrence of Ewing sarcoma (ES) was not clear. Thus, we investigated the biological role and underlying mechanism of gene and pathway in recurrence of ES. Methods Data sets of patients with ES were collected from the GEO database. We used dataset GSE63155 and GSE63156 to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Results We can find that genes with significant interactions in the genes of the recurrence group include SRSF11, TRIM39, SOCS3,NUPL2,COPS5. They work primarily through the oxidative stress pathway. Conclusion Through our research, for the first time found that ES by SRSF11 TRIM39, SOCS3, NUPL2, COPS5 interaction, activation of phosphorylation of bone and oxidative stress is affecting tumor recurrence.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Juan A Azcona ◽  
Samantha Tang ◽  
Thomas M Jeitner ◽  
Michal Schwartzman ◽  
Austin M Guo

Introduction: Compensatory angiogenic response to ischemia is often insufficient in maintaining adequate tissue perfusion resulting in critical limb ischemia and amputation. Identifying a novel mechanism by which angiogenesis occurs in these conditions is clinically relevant. We recently uncovered that an increase in 20-HETE, an arachidonic acid metabolite of CYP4A/F ω-hydroxylases, regulates post-ischemic angiogenesis. However, the underlying mechanism resulting in this increase is unknown. Hypothesis: Neutrophil-derived myeloperoxidase (MPO) and hypochlorous acid (HOCl) critically contribute to post-ischemic 20-HETE increases that drive angiogenesis. Methods: Hindlimb ischemia was established in mice depleted of neutrophils, macrophages, and MPO (MPO -/- ). Angiogenesis was assessed by laser doppler perfusion imaging and micro-vessel density quantitation in the hindlimb gracilis muscles. MPO and HOCl were detected in these tissues using immunohistochemistry and a HOCl-specific fluorophore. We also determined the effects of MPO and HOCl on 20-HETE production, the expression of 20-HETE synthase CYP4A11, and hypoxia inducible factor-1α in cultured endothelial cells (EC) using LC/MS/MS, real time-PCR and western blot analysis, respectively. Results: We found that ischemia failed to increase 20-HETE production in mice depleted of neutrophils and MPO (13 ± 1.5 vs 35 ± 5 and ~2 ± .25 vs 35 ± 5 pg/mg of protein, respectively), accompanied with a decreased post-ischemic angiogenic phenotype. We also detected the formation of MPO and HOCl in post-ischemic gracilis muscles. MPO and HOCl also significantly stimulate CYP4A11 expression and 20-HETE production (40±12 vs 8±5 pg/mg of protein) in EC. Furthermore, HOCl quickly induces CYP4A11 mRNA/protein expression (2-fold,) and the protein expression of HIF-1α (2-fold) in as little as 15 min. Conclusion: Our studies establish for the first time that neutrophil-derived MPO and HOCl are responsible for promoting 20-HETE increases that critically drive angiogenesis post ischemia. Thus, identifying these novel mediators can further future therapeutic strategies to balance angiogenic responses during ischemia as well as treating diseases that are associated with abnormal angiogenesis.


2020 ◽  
Vol 287 (1918) ◽  
pp. 20192615 ◽  
Author(s):  
Michael D. Burns ◽  
Devin D. Bloom

Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle.


2006 ◽  
Vol 129 (4) ◽  
pp. 789-801 ◽  
Author(s):  
Guohua Qin ◽  
Weihong Zhang ◽  
Zhuxi Wu ◽  
Min Wan

Control of workpiece machining error (WME) is a key concern in the design of a fixture system. In this paper, source errors, which are categorized into workpiece-fixture geometric default and workpiece-fixture compliance, are systematically investigated to reveal their effects upon the WME. The underlying mechanism is that source errors lead to the workpiece position error (WPE), the workpiece elastic deformations (WED), and the inconsistent datum error (IDE), and all of them will contribute together to the WME. Here, the IDE refers to the dimension deviation of the processing datum from the locating datum once two references do not coincide. An overall quantitative formulation is proposed for the computing of WME in terms of WPE, WED, and IDE for the first time. In detail, the WPE raised in the workpiece-locating and clamping process is evaluated based on the geometric defaults and local deformations of workpiece-fixture in the contact region. The WED relative to the workpiece-clamping process is determined by solving a nonlinear mathematical programming problem of minimizing the total complementary energy of the frictional workpiece-fixture system. Some numerical tests are finally demonstrated to validate the proposed approach on the basis of both theoretical and experimental data given in the references.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1087 ◽  
Author(s):  
Jian Yang ◽  
Bin Wang ◽  
Chao-feng Zhang ◽  
Xiang-hong Xu ◽  
Mian Zhang

Cynatratoside A (CyA) is a C21 Steroidal glycoside with pregnane skeleton isolated from the root of Cynanchum atratum Bunge (Asclepiadaceae). This study aimed to investigate the effects of CyA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) and the underlying mechanism. CyA was orally administered to mice at 10 and 40 mg/kg 8 h before and 1 h after Con A treatment. The effects of CyA on Con A-induced spleen and liver in mice were assessed via histopathological changes, T lymphocyte amounts and the expressions of IL-1β and ICAM-1. Con A-induced L-02 hepatocytes were used to evaluate whether CyA (0.1–10 μM) can directly protect hepatocytes from cytotoxicity and the possible mechanism. The results revealed that CyA treatment could significantly improve the histopathological changes of spleen and liver, reduce the proliferation of splenic T lymphocytes, and decrease the expressions of IL-1β and ICAM-1 in liver. The experiment in vitro showed that CyA inhibited Con A-induced hepatotoxicity in a concentration-dependent manner. CyA (10 μM) significantly increased/decreased the expression of Bcl-2/Bax and reduced the levels of cleaved caspases-9 and -3. Our study demonstrated for the first time that CyA has a significant protective effect on Con A-induced AIH by inhibiting the activation and adhesion of T lymphocytes and blocking hepatocyte apoptosis.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1158
Author(s):  
Tuo Wang ◽  
Xiaohui Yang ◽  
Qiang Li ◽  
Chuntao Chang

In this work, a small amount of Nb has been added in a Zr52Cu42.5Al5.5 bulk metallic glass, and a Zr52Cu42Al5.5Nb0.5 bulk metallic glass composite with dual-amorphous and nanocrystal structures has been developed for the first time. This in situ formed bulk metallic glass composite has a larger room compressive plasticity of above 13% than that of the Zr52Cu42.5Al5.5 bulk metallic glass. The excellent plasticity of the bulk metallic glass composite is attributed to the phase-separated matrix with micro-nanocrystal and the nanocrystallization during the deforming process. This work may give a new sight into design bulk metallic glass composites and the underlying mechanism for deformation.


2017 ◽  
Vol 313 (1) ◽  
pp. C80-C93 ◽  
Author(s):  
Xianyang Li ◽  
Lihong He ◽  
Qing Yue ◽  
Junhou Lu ◽  
Naixin Kang ◽  
...  

Mesenchymal stem cells (MSCs) have the potential to treat various tissue damages, but the very limited number of cells that migrate to the damaged region strongly restricts their therapeutic applications. Full understanding of mechanisms regulating MSC migration will help to improve their migration ability and therapeutic effects. Increasing evidence shows that microRNAs play important roles in the regulation of MSC migration. In the present study, we reported that miR-9-5p was upregulated in hepatocyte growth factor -treated MSCs and in MSCs with high migration ability. Overexpression of miR-9-5p promoted MSC migration, whereas inhibition of endogenous miR-9-5p decreased MSC migration. To elucidate the underlying mechanism, we screened the target genes of miR-9-5p and report for the first time that CK1α and GSK3β, two inhibitors of β-catenin signaling pathway, were direct targets of miR-9-5p in MSCs and that overexpression of miR-9-5p upregulated β-catenin signaling pathway. In line with these data, inhibition of β-catenin signaling pathway by FH535 decreased the miR-9-5p-promoted migration of MSCs, while activation of β-catenin signaling pathway by LiCl rescued the impaired migration of MSCs triggered by miR-9-5p inhibitor. Furthermore, the formation and distribution of focal adhesions as well as the reorganization of F-actin were affected by the expression of miR-9-5p. Collectively, these results demonstrate that miR-9-5p promotes MSC migration by upregulating β-catenin signaling pathway, shedding light on the optimization of MSCs for cell replacement therapy through manipulating the expression level of miR-9-5p.


2020 ◽  
Vol 8 (1) ◽  
pp. 1-14
Author(s):  
Moni Wekesa ◽  
Martin Awori

The general position of the law on euthanasia worldwide is that all states recognise their duty to preserve life. Courts in various jurisdictions have refused to interpret the 'right to life' or the 'right to dignity' to also include the 'right to die'. Instead, they have held that the state has a duty to protect life. Three categories can however be noted. At one extreme are those countries that have totally criminalised any appearance of euthanasia. In the middle are countries that prohibit what appears to be active euthanasia while at the same time tolerating 'dual-effect' treatment and withdrawal of artificial feeding. At the other extreme are countries that allow euthanasia. Even in this last category of countries, there are stringent guidelines embedded in the law to prevent a situation of 'free for all'. Anecdotal evidence, some empirical studies and case law seem to suggest that euthanasia goes on in many countries irrespective of the law. Euthanasia is a criminal offence in Kenya. However, there have been no empirical studies to ascertain whether euthanasia goes on in spite of the law. This article surveys the current state of the practice of euthanasia globally and narrows down to elaborate on the state of affairs in Kenya.


Sign in / Sign up

Export Citation Format

Share Document