Design and synthesis of novel chitosan–based nanocomposite containing mesoporous nanosilica MCM-41: Effective absorbent for the elimination of Pb (II) from aqueous solution

2020 ◽  
pp. 009524432095189
Author(s):  
Mina Maghsoudi ◽  
Mojtaba Abbasian ◽  
Khalil Farhadi

A novel chitosan–based nanocomposite containing mesoporous nanosilica MCM-41 was synthesized, and its application as a good adsorbent for Pb (II) ions was investigated. In this context, MCM-41 was modified by 3-(Triethoxysilyl)-propylamine (3-APTES) to prepare MCM-41-NH2, and then MCM-41-NH2-graft-polyarcrylamide-co-polyacrylic acide-graft-chitosan [(MCM-41-NH2-g-poly(AAm-co-AA)-g-CS] nanocomposite was fabricated by in situ polymerization. The morphology and structure of nanocomposite were characterized by FT-IR, FE-SEM, EDS, XRD, AAS and TGA analysis. The results exhibited that active functional groups such as (-NH2) and (-COOH) on the nanocomposite surface reacted with Pb (II) ions via coordination bond. Maximum Pb (II) ion removal was seen at pH (6). The Pb (II) concentration and reaction time were 60 mg L−1 and 75 min as optimum conditions. Kinetics studies exhibited that adsorption experimental data were well adjusted to Langmuir isotherm, and the adsorption process onto polymer followed the pseudo-second order kinetics. As a result, it is expected that the synthesized nanocomposite can provide a promising prospect in the field of wastewater treatment.

2021 ◽  
Author(s):  
Liang Wang ◽  
Peng Gao ◽  
Mengxin Liu ◽  
Ziqing Huang ◽  
Shixia Lan ◽  
...  

Monodisperse polypyrrole/SBA-15 composite (PPy/SBA-15) was fabricated by in-situ polymerization and used for Cr(Ⅵ) adsorption from aqueous solution. PPy/SBA-15 was characterized by numerous approaches. Factors affecting the Cr(Ⅵ) adsorption process included...


2020 ◽  
Vol 9 (2) ◽  
pp. 108-116
Author(s):  
Tarmizi Taher ◽  
◽  
Nyanyu Ummu Hani ◽  
Neza Rahayu Palapa ◽  
Risfidian Mohadi ◽  
...  

In this work, two synthetic layered double hydroxides (LDH) consists of Zn2+ as M2+ cation with different M3+ cation, i.e., Al3+ and Cr3+ were used as an adsorbent for Congo Red removal aqueous solution. Both Zn-Al and Zn-Cr LDH were characterized by X-ray diffraction, FT-IR, and BET surface area analyzer. The effect of contact time, initial dye concentration, and temperature were evaluated in a batch technique in order to investigate the characteristic of Congo Red adsorption onto both adsorbents. The experimental data were assessed according to the parameter of adsorption kinetics, isotherm, and thermodynamics. The results of LDH characterization showed that Zn-Al LDH has a higher interlayer distance than Zn-Cr LDH, although Zn-Cr LDH has a higher surface area. The FT-IR analysis indicated the interlayer space of both Zn-Cr and Zn-Al LDH was dominated by CO32- as the interlayer anion species. The adsorption kinetics study of Congo Red on both LDH revealed that the adsorption process followed the pseudo-second-order model. For the adsorption isotherm, the experimental data fit well with the Freundlich model rather than the Langmuir model. The thermodynamic study indicated that the adsorption process that occurred on both adsorbents was spontaneous with exothermic nature.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1537 ◽  
Author(s):  
Kosmas Vamvakidis ◽  
Theodora-Marianna Kostitsi ◽  
Antonis Makridis ◽  
Catherine Dendrinou-Samara

Water pollution by heavy metals is one of the most serious worldwide environmental issues. With a focus on copper(II) ions and copper complex removal, in the present study, ultra-small primary CoFe2O4 magnetic nanoparticles (MNPs) coated with octadecylamine (ODA) of adequate magnetization were solvothermally prepared. The surface modification of the initial MNPs was adapted via three different chemical approaches based on amine and/or carboxylate functional groups: (i) the deposition of polyethylimide (PEI), (ii) covalent binding with diethylenetriaminepentaacetic acid (DTPA), and (iii) conjugation with both PEI and DTPA, respectively. FT-IR, TGA, and DLS measurements confirmed that PEI or/and DTPA were successfully functionalized. The percentage of the free amine (−NH2) groups was also estimated. Increased magnetization values were found in case of PEI and DTPA-modified MNPs that stemmed from the adsorbed amine or oxygen ligands. Comparative UV–Vis studies for copper(II) ion removal from aqueous solutions were conducted, and the effect of time on the adsorption capacity was analyzed. The PEI-modified particles exhibited the highest adsorption capacity (164.2 mg/g) for copper(II) ions and followed the pseudo-second-order kinetics, while the polynuclear copper(II) complex Cux(DTPA)y was also able to be immobilized. The nanoadsorbents were quickly isolated from the solution by magnetic separation and regenerated easily by acidic treatment.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2014 ◽  
Vol 599-601 ◽  
pp. 18-21
Author(s):  
Shu Long Hu ◽  
Jian Lv ◽  
Feng Ying Lu ◽  
Hua Shan Liu ◽  
De Ming Zeng

In this paper, meso-porous MCM-41 was synthesized at room temperature using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template agent. Then MCM-41/unsatura-ted polyester resin (UPR) materials were prepared by in-situ polymerization with the meso-porous MCM-41. MCM-41/UPR in-situ composites were prepared by roller milling and molding processes. Effects of meso-porous MCM-41 on rheological properties and wear resistance of the MCM-41/UPR composites have been investigated. It is shown that MCM-41 has a diameter in range of 4-5 nm and the pores are highly ordered. MCM-41 can improve the rheological properties and wear resistance of the composites. When MCM-41 content is 2%, the mass abrasion loss is decreased by 37.4%.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Di Zhang ◽  
Huaiyin Chen ◽  
Ruoyu Hong

In this paper, the magnetite/polyaniline (PANI) nanocomposite was prepared by the novel reverse in situ polymerization method. Fe3O4 magnetic nanoparticles were synthesized in situ in PANI chloroform solution to form a suspension containing the Fe3O4/PANI nanocomposite. It overcame the disadvantage of oxidation of the Fe3O4 by the oxidant in conventional method. The Fe3O4/PANI chloroform suspension and the Fe3O4/PANI powder were characterized by FT-IR, TEM, XRD, vibrating sample magnetometer, Gouy magnetic balance, conductivity meter, and vector network analyzer. It is demonstrated that the Fe3O4/PANI suspension has a good electrical conductivity that is up to 2.135 μS/cm at the optimal ratio of reactants. The Fe3O4 nanoparticles are well dispersed in the PANI network with a particle size of about 10 nm. Fe3O4/PANI powder has high saturation magnetization and magnetic susceptibility, as well as a broad application prospect in the field of electromagnetic devices. The Fe3O4/PANI powder exhibits an excellent microwave absorption behavior, which can be an outstanding candidate for the rapid development of broadband shielding materials.


2020 ◽  
Vol 840 ◽  
pp. 48-56
Author(s):  
Violla Bestari Ayu Sabrina Putri ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

The adsorption of Cu (II) ions onto selective adsorbent of coal fly ash from Sugar Factory Madukismo, Yogyakarta, Indonesia modified with dithizone has been investigated in batch mode. Some parameters influencing immobilization of dithizone and adsorption of Cu (II) were optimized including an effect of pH, contact time and initial concentration of Cu (II) ions. The FT-IR and XRD analytical results show that the surface of coal fly ash can be modified by immobilization of selective organic ligand towards Cu (II) ions. The optimum conditions for adsorption of Cu (II) are achieved at pH 5, the optimum mass of DICFA and ACFA for copper adsorption were 0.2 g. Kinetics adsorption for copper ions follows pseudo-second-order kinetics with optimum adsorption contact time 60 min for DICFA and ACFA. Isotherms adsorption for Cu ion follow the Langmuir isotherms with chemisorption process and optimum concentration of Cu ion adsorption of 70 mg.L-1 for DICFA and ACFA.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 454 ◽  
Author(s):  
Aili Wang ◽  
Shuhui Li ◽  
Hou Chen ◽  
Ying Liu ◽  
Xiong Peng

This paper reports the successful construction of novel polymerizable ionic liquid microemulsions and the in situ synthesis of poly(ionic liquid) adsorbents for the removal of Zn2+ from aqueous solution. Dynamic light-scattering data were used to confirm the polymerization media and to illustrate the effect of the crosslinker dosage on the droplet size of the microemulsion. FTIR and thermal analysis were employed to confirm the successful preparation of the designed polymers and characterize their thermostability and glass transition-temperature value. The optimization of the adsorption process indicates that the initial concentration of Zn2+, pH, adsorbent dosage and contact time affected the adsorption performance of poly(ionic liquid)s toward Zn2+. Furthermore, our research revealed that the adsorption process can be effectively described by the pseudo second-order kinetic model and the Freundlich isotherm model.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


Sign in / Sign up

Export Citation Format

Share Document