scholarly journals Single Versus Multi-channel Dispersion Analysis of Ultrasonic Guided Waves Propagating in Long Bones

2021 ◽  
pp. 016173462110066
Author(s):  
Tho N. H. T. Tran ◽  
Feng He ◽  
Zhenggang Zhang ◽  
Mauricio D. Sacchi ◽  
Dean Ta ◽  
...  

Ultrasonic guided wave techniques have been applied to characterize cortical bone for osteoporosis assessment. Compared with the current gold-standard X-ray-based diagnostic methods, ultrasound-based techniques pose some advantages such as compactness, low cost, lack of ionizing radiation, and their ability to detect the mechanical properties of the cortex. Axial transmission technique with a source-receiver offset is employed to acquire the ultrasound data. The dispersion characteristics of the guided waves in bones are normally analyzed in the transformed domains using the dispersion curves. The transformed domain can be time-frequency map using a single channel or wavenumber-frequency (or phase velocity-frequency) map with multi-channels. In terms of acquisition effort, the first method is more cost- and time-effective than the latter. However, it remains unclear whether single-channel dispersion analysis can provide as much quantitative guided-wave information as the multi-channel analysis. The objective of this study is to compare the two methods using numerically simulated and ex vivo data of a simple bovine bone plate and explore their advantages and disadvantages. Both single- and multi-channel signal processing approaches are implemented using sparsity-constrained optimization algorithms to reinforce the focusing power. While the single-channel data acquisition and processing are much faster than those of the multi-channel, modal identification and analysis of the multi-channel data are straightforward and more convincing.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Junhua Wu ◽  
Xinglin Chen ◽  
Zheshu Ma

Carbon fibre composites have a promising application future of the vehicle, due to its excellent physical properties. Debonding is a major defect of the material. Analyses of wave packets are critical for identification of the defect on ultrasonic nondestructive evaluation and testing. In order to isolate different components of ultrasonic guided waves (GWs), a signal decomposition algorithm combining Smoothed Pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking is presented. In the algorithm, the time-frequency distribution of GW is first obtained by using Smoothed Pseudo Wigner-Ville distribution. The frequencies of different modes are computed based on summation of the time-frequency coefficients in the frequency direction. On the basis of these frequencies, isolation of different modes is done by Vold–Kalman filter order tracking. The results of the simulation signal and the experimental signal reveal that the presented algorithm succeeds in decomposing the multicomponent signal into monocomponents. Even though components overlap in corresponding Fourier spectrum, they can be isolated by using the presented algorithm. So the frequency resolution of the presented method is promising. Based on this, we can do research about defect identification, calculation of the defect size, and locating the position of the defect.


2019 ◽  
Vol 9 (5) ◽  
pp. 1028 ◽  
Author(s):  
Pengfei Zhang ◽  
Zhifeng Tang ◽  
Fuzai Lv ◽  
Keji Yang

Ultrasonic guided waves (UGWs) have attracted attention in the nondestructive testing and structural health monitoring (SHM) of multi-wire cables. They offer such advantages as a single measurement, wide coverage of the acoustic field, and long-range propagation ability. However, the mechanical coupling of multi-wire structures complicates the propagation behaviors of guided waves and signal interpretation. In this paper, UGW propagation in these waveguides is investigated theoretically, numerically, and experimentally from the perspective of dispersion and wave structure, contact acoustic nonlinearity (CAN), and wave energy transfer. Although the performance of all possible propagating wave modes in a multi-wire cable at different frequencies could be obtained by dispersion analysis, it is ineffective to analyze the frequency behaviors of the wave signals of a certain mode, which could be analyzed using the CAN effect. The CAN phenomenon of two mechanically coupled wires in contact was observed, which was demonstrated by numerical guided wave simulation and experiments. Additionally, the measured guided wave energy of wires located in different layers of an aluminum conductor steel-reinforced cable accords with the theoretical prediction. The model of wave energy distribution in different layers of a cable also could be used to optimize the excitation power of transducers and determine the effective monitoring range of SHM.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Luca De Marchi ◽  
Emanuele Baravelli ◽  
Giampaolo Cera ◽  
Nicolò Speciale ◽  
Alessandro Marzani

To improve the defect detectability of Lamb wave inspection systems, the application of nonlinear signal processing was investigated. The approach is based on a Warped Frequency Transform (WFT) to compensate the dispersive behavior of ultrasonic guided waves, followed by a Wigner-Ville time-frequency analysis and the Hough Transform to further improve localization accuracy. As a result, an automatic detection procedure to locate defect-induced reflections was demonstrated and successfully tested by analyzing numerically simulated Lamb waves propagating in an aluminum plate. The proposed method is suitable for defect detection and can be easily implemented for real-world structural health monitoring applications.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1190-1199 ◽  
Author(s):  
Jorge O. Parra ◽  
Brian J. Zook ◽  
Pei‐Cheng Xu ◽  
Raymon L. Brown

We can use guided seismic waves to map properties of reservoirs between wells, with the low‐velocity layers acting as waveguides. When guided waves are detected, they are an indication of the continuity of the bed examined. Guided waveforms are characterized by time‐frequency representations to study important physical properties of the beds acting as waveguides. We used full waveform seismic modeling in viscoelastic media to examine the required velocity contrasts and distances over which guided‐wave signals can be used. In one set of models, sandstones are the central waveguide lithology; in another set, shales. We applied these models, referred to here collectively as shaly sandstone waveguides, to a range of geological circumstances where either the sands or the shales represent the low‐velocity layers within a reservoir. To study the distances over which guided waves can be detected, we compared the amplitudes of the signals computed for the models, using a realistic source strength, to the signal levels determined from published borehole noise studies. In shaly sandstone waveguides, we find it is feasible to use particle velocity measurements to record guided waves above seismic noise levels in the frequency range of 60 to 800 Hz at well separations exceeding a distance of 800 m. However, pressure detectors such as hydrophones may only be useful up to distances of 400 m between wells. In addition to the issues of shaly sandstone waveguides and practical distances between wells, we present an application of guided waves using crosswell seismic data from the Gypsy test site in Oklahoma (a site originally established by British Petroleum). In this field example within a sandstone reservoir, we demonstrate the sensitivity of leaky mode amplitudes to source‐receiver location. Another telltale characteristic of continuity in the type of reservoir studied at the Gypsy test site, where there is a low shear velocity contrast between the host medium and the waveguide, is the head wave followed by the leaky mode.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 389 ◽  
Author(s):  
Beata Zima ◽  
Rafał Kędra

The following paper presents the results of the theoretical and experimental analysis of the influence of debonding size on guided wave propagation in reinforced concrete beams. The main aim of the paper is a development of a novel, baseline-free method for determining the total area of debonding between steel rebar embedded in a concrete cover on the basis of the average wave velocity or the time of flight. The correctness of the developed relationships was verified during the experimental tests, which included propagation of guided waves in concrete beams with the varying debonding size, shape and location. The analysis of the collected results proved that guided waves can be efficiently used not only in the debonding detection, but also in an exact determining of its total area, which is extremely important in the context of the nondestructive assessment of the load capacity of the reinforced concrete structures. The undeniable advantage of the proposed method is that there are no requirements for any baseline signals collected for an undamaged structure. The paper comprises of the detailed step by step algorithm description and a discussion of both the advantages and disadvantages.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Zhupeng Zheng ◽  
Ying Lei ◽  
Xin Xue

Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8108
Author(s):  
Fei Deng ◽  
Shu-Qing Li ◽  
Xi-Ran Zhang ◽  
Lin Zhao ◽  
Ji-Bing Huang ◽  
...  

Ultrasonic guided waves are sensitive to many different types of defects and have been studied for defect recognition in rail. However, most fault recognition algorithms need to extract features from the time domain, frequency domain, or time-frequency domain based on experience or professional knowledge. This paper proposes a new method for identifying many different types of rail defects. The segment principal components analysis (S-PCA) is developed to extract characteristics from signals collected by sensors located at different positions. Then, the Support Vector Machine (SVM) model is used to identify different defects depending on the features extracted. Combining simulations and experiments of the rails with different kinds of defects are established to verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and transverse crack under the shelling. There are nine channels of the excitation-reception to acquire guided wave detection signals. The results show that the defect classification accuracy rates are 96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and multi-point reception, or the method of multi-point excitation and reception at a single point.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 38-49 ◽  
Author(s):  
Jorge O. Parra ◽  
Chris L. Hackert ◽  
Anthony W. Gorody ◽  
Valeri Korneev

Guided seismic waves can be used to predict continuity and discontinuity of reservoir structures between wells, with the low‐velocity beds acting as waveguides. We relate guided‐wave signatures to waveguide targets using experimental data acquired at the Stratton gas field in southeast Texas. The observed seismic data indicate the presence of trapped energy in low velocity shale markers between wells 145 and 151. Guided waves in the form of leaky modes are excited, transmitted, and detected in the low‐velocity shale markers at a well separation of 1730 ft (527 m). Dispersion analysis, modeling, frequency–amplitude depth curves, well logs, and lithological information all support the results. Specifically, the characterization of two low‐velocity shale markers, V2 and V5, demonstrates that V2 is more heterogeneous than V5 between the source well 151 and detector well 145. Finally, images of synthetic and real data show the potential applications of the guided‐wave technology as a tool for reservoir characterization.


2005 ◽  
Vol 127 (4) ◽  
pp. 530-537 ◽  
Author(s):  
Jian Li

Ultrasonic guided waves have been used extensively for long-range pipe inspections. The technique is based on detecting the guided wave echoes reflected from pipe defects located at a remote distance. The axial location of the defect from the transducer can be determined by the arrival time of the echo. However, further information about the defect, such as the circumferential size or distribution of the defect, is hard to obtain with conventional guided waves. This problem will be a critical issue for applications, such as discriminating the pipe corrosion defects from pipe welds. In this paper, a circumferential guided wave array is built for sending and receiving guided waves along the pipe. All of the elements are connected to a single channel pulser/receiver through multiplexers. An algorithm based on two-dimensional (2D) blind deconvolution is developed to process the guided wave echoes acquired by the multiplexed circumferential transducer array. The output of the algorithm can be utilized for evaluating the circumferential distributions and geometry of the defects. The processing algorithm is verified via both numerical simulations and experiments in the paper. This circumferential sizing algorithm can serve as an effective postanalysis tool for most available guided wave pipe inspection systems.


2006 ◽  
Vol 321-323 ◽  
pp. 804-807 ◽  
Author(s):  
Ik Keun Park ◽  
Hyun Mook Kim ◽  
Yong Kwon Kim ◽  
Yong Sang Cho

For efficient NDE of pipes, essential components of power plant facilities, ultrasonic guided waves were generated and received applying an air-coupled transducer and comb one as non-contact technology. Mode generation and selection were predicted based on theoretical dispersive curve and the element space of a comb transducer. In addition, a receiving angle of the air-coupled transducer was determined to acquire the predicted modes by theoretical phase velocity of each mode. Theoretical dispersive curve was compared with the results of the time-frequency spectroscopes based on the wavelet transform and 2D-FFT to identify the characteristics of the received mode. The received modes show a good agreement with the predicted ones.


Sign in / Sign up

Export Citation Format

Share Document