scholarly journals Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1

2020 ◽  
pp. 0271678X2092814 ◽  
Author(s):  
Nancy Tseng ◽  
Scott C Lambie ◽  
Christopher Q Huynh ◽  
Bridget Sanford ◽  
Manisha Patel ◽  
...  

Stroke-induced cerebral ischemia is a major cause of death and disability. The disruption of blood flow results in neuronal and glial cell death leading to brain injury. Reperfusion restores oxygen to the affected tissue, but can also cause damage through an enhanced oxidative stress and inflammatory response. This study examines mitochondrial transfer from MSC to neurons and the role it plays in neuronal preservation after oxidant injury. We observed the transfer of mitochondria from MSC to mouse neurons in vitro following hydrogen peroxide exposure. The observed transfer was dependent on cell-to-cell contact and led to increased neuronal survival and improved metabolism. A number of pro-inflammatory and mitochondrial motility genes were upregulated in neurons after hydrogen peroxide exposure. This included Miro1 and TNFAIP2, linking inflammation and mitochondrial transfer to oxidant injury. Increasing Miro1 expression in MSC improved the metabolic benefit of mitochondrial transfer after neuronal oxidant injury. Decreasing Miro1 expression had the opposite effect, decreasing the metabolic benefit of MSC co-culture. MSC transfer of mitochondria to oxidant-damaged neurons may help improve neuronal preservation and functional recovery after stroke.

1990 ◽  
Vol 15 (11) ◽  
pp. 1101-1107 ◽  
Author(s):  
Clifford L. Eastman ◽  
Tomas R. Guilarte

2019 ◽  
Vol 20 (23) ◽  
pp. 6017 ◽  
Author(s):  
Prospero Civita ◽  
Diana M. Leite ◽  
Geoffrey Pilkington

The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive “reactive” astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.


1996 ◽  
Vol 12 (3) ◽  
pp. 146-150 ◽  
Author(s):  
E. Koulaouzidou ◽  
T. Lambrianidis ◽  
P. Beltes ◽  
K. Lyroudia ◽  
C. Papadopoulos
Keyword(s):  

Hepatology ◽  
1988 ◽  
Vol 8 (6) ◽  
pp. 1673-1678 ◽  
Author(s):  
Philippe Mavier ◽  
Bernard Guigui ◽  
Anne-Marie Preaux ◽  
Jean Rosenbaum ◽  
Marie-Claude Lescs ◽  
...  

2001 ◽  
Vol 100 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Michiya IGASE ◽  
Takafumi OKURA ◽  
Michitsugu NAKAMURA ◽  
Yasunori TAKATA ◽  
Yutaka KITAMI ◽  
...  

GADD153 (growth arrest- and DNA damage-inducible gene 153) is expressed at very low levels in growing cells, but is markedly induced in response to a variety of cellular stresses, including glucose deprivation, exposure to genotoxic agents and other growth-arresting situations. Forced expression of GADD153 induces cell cycle arrest in many types of cells. It is also reported that GADD153 is directly associated with apoptosis. Recently we have reported that platelet-derived growth factor (PDGF)-BB induces apoptosis in cultured vascular smooth muscle cells (VSMC), but only when 100% confluency is reached. These results suggested that cell–cell contact inhibition (cell growth arrest) may be a critical factor for induction of VSMC apoptosis by PDGF-BB. In the present study, we explored the role of GADD153, one of a number of growth-arrest-related gene products, in the molecular mechanisms of VSMC apoptosis in vitro and in vivo. GADD153 was markedly induced at both the mRNA and protein levels, in parallel with the induction of VSMC apoptosis, after treatment with PDGF-BB. Moreover, overexpression of GADD153 in VSMC significantly reduced cell viability and induced apoptosis. In the carotid artery balloon injury model in rats, GADD153 protein was expressed in apoptotic VSMC which were positively stained by in situ DNA labelling. These results demonstrate an important role for GADD153 in the molecular mechanisms of VSMC apoptosis.


2008 ◽  
Vol 7 (3) ◽  
pp. 38-43 ◽  
Author(s):  
N. Yu. Chasovskikh

Programmed cell death of peripheral blood mononuclear leucocytes taken from healthy donors and cultivated with various concentration of Н2О2, selective inhibitors of JNK (SP600125), 38 (ML3403) and in case of pneumonia was investigated. Intensification of intracellular production of reactive oxy р МАРК - gen species was accompanied by the increase in number of apoptotic and TNFR1-presented cells and mononuclears with reduced value of mitochondrial transmembrane potential in a case of oxidative stress induction with 1 mM hydrogen peroxide and in blood taken from patients with pneumonia. Action of inhibitors SP600125 and ML3403 in vitro in oxidative stress conditions prevents the increase in number of annexin- positive mononuclear cells, that confirms the participation of JNK and 38 -kinases in mechanisms of oxidative stress-mediated apoptosis dysregulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiamin Li ◽  
Yuanshi Li ◽  
Yining Liu ◽  
Hang Yu ◽  
Ning Xu ◽  
...  

Infarcted myocardium is predisposed to cause lethal ventricular arrhythmias that remain the main cause of death in patients suffering myocardial ischemia. Liver-derived fibroblast growth factor 21 (FGF21) is an endocrine regulator, which exerts metabolic actions by favoring glucose and lipids metabolism. Emerging evidence has shown a beneficial effect of FGF21 on cardiovascular diseases, but the role of FGF21 on ventricular arrhythmias following myocardial infarction (MI) in humans has never been addressed. This study was conducted to investigate the pharmacological effects of FGF21 on cardiomyocytes after MI in humans. Patients with arrhythmia in acute MI and healthy volunteers were enrolled in this study. Serum samples were collected from these subjects on day 1 and days 7–10 after the onset of MI for measuring FGF21 levels using ELISA. Here, we found that the serum level of FGF21 was significantly increased on day 1 after the onset of MI and it returned to normal on days 7–10, relative to the Control samples. In order to clarify the regulation of FGF21 on arrhythmia, two kinds of arrhythmia animal models were established in this study, including ischemic arrhythmia model (MI rat model) and nonischemic arrhythmia model (ouabain-induced guinea pig arrhythmia model). The results showed that the incidence and duration time of ischemic arrhythmias in rhbFGF21-treated MI rats were significantly reduced at different time point after MI compared with normal saline-treated MI rats. Moreover, the onset of the first ventricular arrhythmias was delayed and the numbers of VF and maintenance were attenuated by FGF21 compared to the rhbFGF21-untreated group in the ouabain model. Consistently, in vitro study also demonstrated that FGF21 administration was able to shorten action potential duration (APD) in hydrogen peroxide-treated AC16 cells. Mechanically, FGF21 can ameliorate the electrophysiological function of AC16 cells, which is characterized by rescuing the expression and dysfunction of cardiac sodium current (INa) and inward rectifier potassium (Ik1) in AC16 cells induced by hydrogen peroxide. Moreover, the restorative effect of FGF21 on NaV1.5 and Kir2.1 was eliminated when FGF receptors were inhibited. Collectively, FGF21 has the potential role of ameliorating transmembrane ion channels remodeling through the NaV1.5/Kir2.1 pathway by FGF receptors and thus reducing life-threatening postinfarcted arrhythmias, which provides new strategies for antiarrhythmic therapy in clinics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ganhua You ◽  
Xiangshu Long ◽  
Fang Song ◽  
Jing Huang ◽  
Maobo Tian ◽  
...  

Numerous studies have shown that long noncoding RNAs (lncRNAs) play essential roles in the development and progression of human cardiovascular diseases. However, whether lncRNA ezrin antisense RNA 1 (EZR-AS1) is associated with the progression of coronary heart disease (CHD) remains unclear. Accordingly, the aim of the present study was to evaluate the role of lncRNA EZR-AS1 in patients with CHD and in human venous endothelial cells (HUVECs). The findings revealed that lncRNA EZR-AS1 was highly expressed in the peripheral blood of patients with CHD. In vitro experiments showed that the overexpression of EZR-AS1 could enhance proliferation, migration, and apoptosis by upregulating the expression of EZR in HUVECs; downregulation of lncRNA EZR-AS1 resulted in the opposite effect. lncRNA EZR-AS1 was also found to regulate SET and MYND domain-containing protein 3 (SMYD3), a histone H3 lysine 4-specific methyltransferase, which subsequently mediated EZR transcription. Collectively, these results demonstrate that lncRNA EZR-AS1 plays an important role in HUVECs function via SMYD3 signaling.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3604-3604
Author(s):  
Iran Rashedi ◽  
Alejandro Gomez-Aristizábal ◽  
Xinghua Wang ◽  
Sowmya Viswanathan ◽  
Armand Keating

Abstract Mesenchymal stromal cells (MSCs) are used as cell therapy for a variety of disorders, largely because of their immunosuppressive and regenerative functions by exerting immune effects via direct and indirect interactions with many types of immune cells. MSCs recruit and promote the generation of regulatory T cells (Tregs) both in vitro and in vivo. Toll-like receptors (TLRs), known for roles in innate and adaptive immunity, are involved in numerous pathological conditions, including graft-versus-host disease (GVHD). Several TLRs, especially TLR3 and TLR4, are highly expressed on MSCs and affect immunomodulatory functions and possibly, therapeutic potency. Indeed, two distinct anti- and pro-inflammatory MSC phenotypes have been reported after activation of TLR3 and TLR4, respectively. The role of TLRs on MSC-mediated Treg generation, however, is not known. In this study, we investigated the role of TLR3 and TLR4 in the MSC-mediated generation of Tregs in an allogeneic co-culture model. Data for each experiment were collected from 1 PBMC donor and 3 MSC donors. We found that pre-activation of TLR3 and TLR4 by their ligands (poly I:C for TLR3, LPS for TLR4) enhanced the generation of Tregs by MSCs: 1.2 ± 0.2% in CD4+ cells cultured alone, 3.9 ± 0.3% in co-culture with control MSCs, 6.04 ± 0.1% in co-culture with TLR3-activated MSCs and 6.6 ± 0.4% in co-culture with TLR4-activated MSCs. siRNA-mediated silencing of TLR3 and TLR4 reduced Tregs by 51.7% and 61.8% in co-culture with poly I:C- and LPS-primed MSCs, respectively. Treg levels for the poly I:C-activated group were 6.3 ± 0.2% for co-cultures with control MSCs, 5.2 ± 0.3% for MSCs treated with scrambled RNA and 3 ± 0.3% for MSCs treated with TLR3-siRNA. For the LPS-activated group, Treg levels were 6.7 ± 0.3% with control MSCs, 5.7 ± 0.5% with MSCs treated with scrambled RNA and 2.5 ± 0.3% for MSCs treated with TLR4-siRNA. MSC-mediated Treg induction required cell-cell contact as conditioned media (CM) from TLR-activated or control MSCs failed to induce Tregs among CD4+ enriched cells: 4.75 ± 0.1% in direct co-culture vs 2.72 ± 0.3%, P= 0.004 in CM from control MSCs, 6.35 ± 0.2% in direct co-culture vs 2.97 ± 0.2%, P=0.0008 in CM from TLR3-activated MSCs, 6.7 ± 0.3% in direct co-culture vs 3.2 ± 0.3, P=0.001 in CM from the TLR4-activated group. We showed that the notch pathway is activated in CD4+ cells co-cultured with TLR-activated, but not control MSCs, and inhibition of notch signaling reduced MSC-mediated Tregs in co-cultures with TLR3- and TLR4-activated, but not control MSCs: 4.75 ± 0.1% vs 3.76 ± 0.4%, P=0.09 in control MSCs, 6.35 ± 0.2% vs 4.43 ± 0.3%, P=0.012 in TLR3-activated MSCs, 6.7 ± 0.3% vs 3.97 ± 0.1%, P=0.001 in TLR4-activated MSCs. Our data show a new role for TLR3 and TLR4 in the immunoregulatory function of human MSCs, and indicate the involvement of notch signaling as a mechanism for the further induction of Tregs in TLR3- and TLR4-activated MSCs. These studies have implications for the use of TLR-activated MSCs in the enhanced generation of Tregs such as for the treatment of acute GVHD. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 196 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ciriaco A. Piccirillo ◽  
John J. Letterio ◽  
Angela M. Thornton ◽  
Rebecca S. McHugh ◽  
Mizuko Mamura ◽  
...  

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.


Sign in / Sign up

Export Citation Format

Share Document