scholarly journals Effect of Solanum macrocarpon Linn leaf aqueous extract on the brain of an alloxan-induced rat model of diabetes

2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092264
Author(s):  
Mary A. Okesola ◽  
Basiru O. Ajiboye ◽  
Babatunji E. Oyinloye ◽  
Olukemi A. Osukoya ◽  
Ofogho S. Owero-ozeze ◽  
...  

Objective This study was designed to evaluate the protective effect of aqueous extract of Solanum macrocarpon Linn leaf in the brain of an alloxan-induced rat model of diabetes. Methods The experimental model of diabetes was induced by a single intraperitoneal injection of freshly prepared alloxan. Rats were then divided into six groups: normal control, diabetes control, diabetes group treated with metformin, and three diabetes groups treated with different concentrations of S. macrocarpon. Rats were sacrificed on day 14 of the experiment and different brain biochemical parameters were assessed and compared between groups. Results Administration of different doses of S. macrocarpon leaf aqueous extract was associated with significantly reduced levels of fasting blood glucose, lipid peroxidation, neurotransmitters, cholinesterases, cyclooxygenase-2 and nitric oxide compared with diabetes control rats. In addition, antioxidant enzyme activities were significantly increased in diabetes rats administered 12.45, 24.9 and 49.8 mg/kg body weight of S. macrocarpon versus diabetes control rats. Conclusion Aqueous extract of S. macrocarpon Linn leaf may be useful in the management of diabetic neuropathy.

2021 ◽  
Vol 11 (6) ◽  
pp. 14251-14259

This study aims to validate the anti-diabetic and antidyslipidemic activities of aqueous extract of Entandrophargma cylindricum stem on streptozotocin-induced diabetic rats. Thirty healthy male Albino rats (190 ± 10 g) were grouped into 6 groups of 5 each: group A (control) rats were not induced with diabetes; group B (diabetic treated with Metformin 100 mg/kg); group C (diabetic untreated); group D (diabetic treated with Entandrophargma cylindricum extract 50 mg/kg); group E (diabetic treated with Entandrophargma cylindricum extract 100 mg/kg) and group F (diabetic treated with Entandrophargma cylindricum extract 200 mg/kg). Fasting blood glucose concentration and glucose tolerance response increased after 7 days but was reversed near normal on day 14, day 21. Hexokinase activity significantly (p < 0.05) increase in the metformin and 200mg/kg bw. However, plasma high-density lipoprotein concentration, plasma insulin concentration, and hepatic glycogen level decreased in the untreated group, 50 and 100 mg/kg bw. Aqueous extract of E. cylindricum stem bark possesses significant anti-diabetic and antidyslipidemic activity in diabetic rats.


2019 ◽  
Vol 19 (8) ◽  
pp. 1148-1156 ◽  
Author(s):  
Ifeanacho Mercy Onuekwuzu ◽  
Ikewuchi Catherine Chidinma ◽  
Ikewuchi Jude Chigozie

Objective:Traditionally prepared infusions and decoctions are commonly used in the management of diabetes mellitus, in southern Nigeria; one of such is the aqueous extract of the sclerotia of Pleurotus tuberregium (“usu” milk). In this study, the effects of the extract on the body weights, tissue/ organ weights, fasting blood glucose, blood/plasma lipid profiles and atherogenic indices were investigated in normal and alloxan-induced diabetic rabbits.Methods:Diabetes mellitus was induced by the injection of alloxan (120 mg/kg body weight) via the marginal ear vein. The extract was administered orally at 100, 200 and 300 mg/kg to normal and diabetic rabbits; while metformin was administered at 50 mg/kg. The crude extract was analyzed by gas chromatography, coupled to flame ionization detector.Results:Thirty-one known flavonoids were detected, consisting mainly of isoquercetin (28.5%), luteolin (24.3%), quercetin (18.8%) and kaempferol (11.3%). Sitosterol (82.0%) and stigmasterol (12.5%) were the most abundant of the seven phytosterols detected. Compared to the diabetic control, the treatment significantly (p<0.05) lowered the weights of the kidney and liver, as well as the levels of blood glucose and triglyceride, plasma VLDL, LDL and non-HDL cholesterol, atherogenic index of plasma, cardiac risk ratio, atherogenic coefficient and Castelli’s risk index II. It, however, significantly (p<0.05) increased plasma HDL cholesterol, without significantly affecting blood total cholesterol levels.Conclusion:This study showed that the extract was hypoglycemic, and improved lipid profile and atherogenic indices, thus highlighting its cardioprotective potential, thereby supporting its use in the management of diabetes mellitus.


2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anton Lindberg ◽  
Ryosuke Arakawa ◽  
Tsuyoshi Nogami ◽  
Sangram Nag ◽  
Magnus Schou ◽  
...  

Abstract Background Over the last decade, a few radioligands have been developed for PET imaging of brain 5-HT1B receptors. The 5-HT1B receptor is a G-protein-coupled receptor (GPCR) that exists in two different agonist affinity states. An agonist ligand is expected to be more sensitive towards competition from another agonist, such as endogenous 5-HT, than an antagonist ligand. It is of interest to know whether the intrinsic activity of a PET radioligand for the 5-HT1B receptor impacts on its ability to detect changes in endogenous synaptic 5-HT density. Three high-affinity 11C-labeled 5-HT1B PET radioligands with differing intrinsic activity were applied to PET measurements in cynomolgus monkey to evaluate their sensitivity to be displaced within the brain by endogenous 5-HT. For these experiments, fenfluramine was pre-administered at two different doses (1.0 and 5.0 mg/kg, i.v.) to induce synaptic 5-HT release. Results A dose-dependent response to fenfluramine was detected for all three radioligands. At the highest dose of fenfluramine (5.0 mg/kg, i.v.), reductions in specific binding in the occipital cortex increased with radioligand agonist efficacy, reaching 61% for [11C]3. The most antagonistic radioligand showed the lowest reduction in specific binding. Conclusions Three 5-HT1B PET radioligands were identified with differing intrinsic activity that could be used in imaging high- and low-affinity states of 5-HT1B receptors using PET. From this limited study, radioligand sensitivity to endogenous 5-HT appears to depend on agonist efficacy. More extensive studies are required to substantiate this suggestion.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1118
Author(s):  
Jan Homolak ◽  
Ana Babic Perhoc ◽  
Ana Knezovic ◽  
Jelena Osmanovic Barilar ◽  
Melita Salkovic-Petrisic

The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer’s disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.


Sign in / Sign up

Export Citation Format

Share Document