Prototype Design of Cement/Emulsified Asphalt Based Piezoelectric Composites and its Potential Application in Vehicle Speed Sensing

Author(s):  
Xingyi Zhu ◽  
Xudong Zhou ◽  
Fangyong Ye ◽  
Zhao Du

Piezoelectric composites (PC) embedded in pavement have shown great potential in traffic information sensing. As the main form of transportation, the road is the source of much traffic information including vehicle load information. The research into PC can supplement the collection of traffic information used in the development of intelligent technologies and provide effective solutions to problems existing in the process of information gathering. In this study, a 2-2 cement/emulsified asphalt-based PC was prepared with the cutting-filling method. To optimize the PC preparation, the effects of the volume fraction of the piezoelectric phase and the matrix phase composition on the piezoelectric properties of the PC were investigated by employing the finite element method. The results indicated that the smaller the volume fraction of the piezoelectric phase, the higher the voltage output of the PC, and the higher the sensitivity to external load, but the greater the stress concentration at the interface between the piezoelectric phase and the matrix phase. In addition, the greater the amount of emulsified asphalt in the matrix phase, the higher the voltage output of the PC. However, a higher content of emulsified asphalt will undermine the fluidity of the matrix phase. Based on the simulation analysis, performance optimization of the cement/emulsified asphalt PC was achieved. According to the voltage output characteristic of PC under a moving load, a placement scheme of PCs in the asphalt pavement was also proposed, which enables vehicle speeds to be be sensed with high precision.

2020 ◽  
pp. 002199832094964
Author(s):  
Mojde Biarjemandi ◽  
Ehsan Etemadi ◽  
Mojtaba Lezgy-Nazargah

Recent researches show that the embedment of hollow spheres in the matrix phase of composite materials improves the strength of these structures against crack propagations. Rare studies are reported for calculating equivalent elastic constants of fiber reinforced composites containing hollow spheres. In this paper, the effects of hollow spheres on mechanical characteristics of fiber reinforced composite are studied for the first time. To achieve this aim, a micromechanics based finite element method is employed. Representative volume elements (RVEs) including hollow spheres with different radius, thickness and volume fraction of hollow spheres, are modeled by using 3D finite elements. The equivalent elastic constants are calculated through homogenization technique. The results are compared with available experimental works. Good agreements find between two sets of results. Also, the volume fraction, number and thickness of hollow spheres as effective parameters on mechanical properties of composite were investigated. The results show the equivalent elastic properties increase with increasing the volume fraction and number of hollow spheres and decrease with increasing the number of hollow spheres. Furthermore, the equivalent Young’s modulus in transverse directions to the fiber direction and shear modulus of the composite increase with increasing the thickness of hollow spheres. As a final result, the presence of hollow spheres in the matrix phase generally increases the equivalent elastic constants without significant changes in the weight of structures.


2007 ◽  
Vol 80 (5) ◽  
pp. 777-808 ◽  
Author(s):  
Yoshihide Fukahori

Abstract The author proposed the third concept in the reinforcement of elastomers for segmented polyurethane with the direct observation by microscopic techniques. The structure in segmented polyurethane elastomers fundamentally consists of three domains of different sizes, two kinds of micro-domain, cluster of 100 nm in diameter and spherulite of µm order. Of the micro-domains, one is the hard-segment (HS)-rich micro-domain consisting of hard segment (4 nm thickness) and soft segment (7 nm) and the other is the hard-segment (HS)-poor micro-domain of hard segment (4 nm) and soft segment (15∼20 nm). The HS cluster is constructed by the assembly of the HS-rich micro-domains. The spherulite seems to be composed of the dense packing of the HS cluster, growing up radially or circularly from the center to the outside surface. From physical and mechanical points of view, we can regard the above structures in the segmented polyurethane as bi-continuous structure of the HS clusters whose volume fraction is 0.2, and the matrix phase consisting of the HS-poor domains (0.8 in the volume fraction). The characteristic stress-strain relation of the segmented polyurethane is generated by the combination of both the continuous structures. That is, the initial very high stress (modulus) at small extension and the following gradual increase in stress at medium extension mainly result from the extension and the sliding of the HS cluster, respectively. The very large stress-upturn at large extension and the final great tensile strength are generated by the contribution of both the continuous structures. Thus, the third reinforcement is achieved by the formation of bicontinuous structure of the hard and strong cluster and also the strong matrix phase, in which the absolute structural defects seem not to be included.


2011 ◽  
Vol 687 ◽  
pp. 339-342 ◽  
Author(s):  
Min Sun ◽  
Dong Yu Xu ◽  
Shi Feng Huang

1-3 polymer-based piezoelectric composites were fabricated using epoxy as the matrix by the cut-filling method. The influences of PMN volume fraction on the piezoelectric and dielectric properties of the composite were analyzed, and then the piezoelectric composite was fabricated to transducer whose properties were also analyzed. The results indicate that with increasing the PMN volume fraction, both the hydrostatic piezoelectric voltage gh and hydrostatic figures of merit dh·gh of the composite decrease, while the relative dielectric constant εr increases. The hydrostatic piezoelectric strain dh has the optimum value in the PMN volume fraction range of 40%-60%. The resonant frequency of transducer in water is 306.5 kHz and anti-resonant frequency is 352.6 kHz.


2011 ◽  
Vol 324 ◽  
pp. 189-192 ◽  
Author(s):  
Ali Hallal ◽  
Farouk Fardoun ◽  
Rafic Younes ◽  
Fadi Hage Chehade

This work represents a comparative study of available analytical micromechanical models used to evaluate the elastic properties of unidirectional (UD) composite material with long fibers (where the ratio Length/Diameter of the fibers is considered to be infinite). The objective of this work is to find the appropriate model, to be used with different volume fractions of fibers, to determine the micromechanical elastic properties. This study is carried out due to the importance of using the suitable micromechanical model, when modeling bi-dimensional and tridimensional composite materials. The models are divided into two different categories: rheological, and inclusion models. The UD composite material represents a transversely isotropic material composed of two phases: the reinforcement phase and the matrix phase. Isotropic fibers (e.g. glass fibers) or anisotropic fibers (e.g. carbon fibers) represent the reinforcement phase while an isotropic material (e.g. epoxy) represents the matrix phase. In this study only longitudinal and transversal Young’s moduli are discussed. Analytical and Finite element modeling is made for a carbon fiber/epoxy UD composite. The obtained analytical results are compared to those obtained numerically and to the available experimental data. The analytical results are evaluated for different values of fiber volume fraction Vf ranging from 0 to 1.


Author(s):  
N. Y. Jin

Localised plastic deformation in Persistent Slip Bands(PSBs) is a characteristic feature of fatigue in many materials. The dislocation structure in the PSBs contains regularly spaced dislocation dipole walls occupying a volume fraction of around 10%. The remainder of the specimen, the inactive "matrix", contains dislocation veins at a volume fraction of 50% or more. Walls and veins are both separated by regions in which the dislocation density is lower by some orders of magnitude. Since the PSBs offer favorable sites for the initiation of fatigue cracks, the formation of the PSB wall structure is of great interest. Winter has proposed that PSBs form as the result of a transformation of the matrix structure to a regular wall structure, and that the instability occurs among the broad dipoles near the center of a vein rather than in the hard shell surounding the vein as argued by Kulmann-Wilsdorf.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Wenjun Song ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

In this study, the phase transformation behaviour of the carburised layer and the matrix of 23CrNi3Mo steel was comparatively investigated by constructing continuous cooling transformation (CCT) diagram, determining the volume fraction of retained austenite (RA) and plotting dilatometric curves. The results indicated that Austenite formation start temperature (Ac1) and Austenite formation finish temperature (Ac3) of the carburised layer decreased compared to the matrix, and the critical cooling rate (0.05 °C/s) of martensite transformation is significantly lower than that (0.8 °C/s) of the matrix. The main products of phase transformation in both the carburised layer and the matrix were martensite and bainite microstructures. Moreover, an increase in carbon content resulted in the formation of lamellar martensite in the carburised layer, whereas the martensite in the matrix was still lath. Furthermore, the volume fraction of RA in the carburised layer was higher than that in the matrix. Moreover, the bainite transformation kinetics of the 23CrNi3Mo steel matrix during the continuous cooling process indicated that the mian mechanism of bainite transformation of the 23CrNi3Mo steel matrix is two-dimensional growth and one-dimensional growth.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


2006 ◽  
Vol 510-511 ◽  
pp. 358-361
Author(s):  
Won Yong Kim ◽  
Han Sol Kim ◽  
In Dong Yeo ◽  
Mok Soon Kim

We report on advanced Ni3Al based high temperature structural alloys with refractory alloying elements such as Zr and Mo to be apllied in the fields of die-casting and high temperature press forming as die materials. The duplex microstructure consisting of L12 structured Ni3Al phase and Ni5Zr intermetallic dispersoids was observed to display the microstructural feature for the present alloys investigated. Depending on alloying elements, the volume fraction of 2nd phase was measured to be different, indicating a difference in solid solubility of alloying elements in the matrix γ’ phase. Lattice parameter of matrix phase increased with increasing content of alloying elements. In the higher temperature region more than 973K, the present alloys appeared to show their higher strength compared to those obtained in conventional superalloys. On the basis of experimental results obtained, it is suggested that refractory alloying elements have an effective role to improve the high temperature strength in terms of enhanced thermal stability and solid solution hardening.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 46
Author(s):  
Hu Xu ◽  
Junsheng Sun ◽  
Jun Jin ◽  
Jijun Song ◽  
Chi Wang

At present, most Mo2FeB2-based cermets are prepared by vacuum sintering. However, vacuum sintering is only suitable for ordinary cylinder and cuboid workpieces, and it is difficult to apply to large curved surface and large size workpieces. Therefore, in order to improve the flexibility of preparing Mo2FeB2 cermet, a flux cored wire with 70% filling rate, 304 stainless steel, 60 wt% Mo powder and 40 wt% FeB powder was prepared. Mo2FeB2 cermet was prepared by an arc cladding welding metallurgy method with flux cored wire. In this paper, the microstructure, phase evolution, hardness, wear resistance and corrosion resistance of Mo2FeB2 cermets prepared by the vacuum sintering (VM-Mo2FeB2) and arc cladding welding metallurgy method (WM-Mo2FeB2) were systematically studied. The results show that VM-Mo2FeB2 is composed of Mo2FeB2 and γ-CrFeNi.WM-Mo2FeB2 is composed of Mo2FeB2, NiCrFe, MoCrFe and Cr2B3. The volume fraction of hard phase in WM-Mo2FeB2 is lower than that of VM-Mo2FeB2, and its hardness and corrosion resistance are also slightly lower than that of VM-Mo2FeB2, but there are obvious pores in the microstructure of VM-Mo2FeB2, which affects its properties. The results show that WM-Mo2FeB2 has good diffusion and metallurgical bonding with the matrix and has no obvious pores. The microstructure is compact and the wear resistance is better than that of VM-Mo2FeB2.


Sign in / Sign up

Export Citation Format

Share Document