Di-2-ethylhexyl phthalate (DEHP) induces apoptosis of mouse HT22 hippocampal neuronal cells via oxidative stress

2020 ◽  
Vol 36 (11) ◽  
pp. 844-851
Author(s):  
Wei Tu ◽  
Weifeng Li ◽  
Xingen Zhu ◽  
Linlin Xu

Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can affect memory; however, the underlying mechanism remains unclear. In the present study, mouse HT22 cells, an immortalized hippocampal neuronal cell line, was utilized as an in vitro model. We showed that DEHP dramatically inhibited cell viability and increased lactate dehydrogenase (LDH) release from the cells in a dose-dependent manner, suggesting that DEHP could cause cytotoxicity of mouse HT22 cells. The protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax markedly increased in the DEHP-treated cells, whereas there was a significant decrease in the Bcl-2 protein level, implying that DEHP could induce apoptosis of mouse HT22 cells. DEHP exposure significantly increased the content of malondialdehyde, whereas it markedly decreased the level of glutathione and the activities of glutathione peroxidase and superoxide dismutase, suggesting that DEHP induced oxidative stress of the cells. Compared with the DEHP-treated group, the inhibition of cell viability and the release of LDH were rescued in the N-acetyl-l-cysteine plus DEHP group. Furthermore, inhibition of oxidative stress could rescue the induction of apoptosis by DEHP. Collectively, our results indicated that DEHP could induce apoptosis of mouse HT22 cells via oxidative stress.

2020 ◽  
Vol 19 (7) ◽  
pp. 1359-1364
Author(s):  
Xu Chen ◽  
Yingjie Cao ◽  
Naifeng Guo ◽  
Guoyuan Lu

Purpose: To investigate the effect of Z-ligustilide (Z-lig) on cisplatin-induced nephrotoxicity and examine whether NRF2 signaling mediates the underlying mechanism of action.Methods: Human proximal tubular epithelial cells (HK-2) were pretreated with 20 or 100 μM Z-lig for 2 h, followed by 10 μM cisplatin treatment for 24 h. Cell viability was measured using (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A commercial kit was used todetermine lactate dehydrogenase (LDH) release. Apoptosis was determined by flow cytometry while Western blotting was used to evaluate protein levels. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) were assessed by enzymelinked immunosorbent assay (ELISA).Results: Cisplatin decreased HK-2 cell viability and increased LDH release, while Z-lig increased cell viability and decreased LDH release in a dose-dependent manner (p < 0.05). Moreover, Z-lig reduced cisplatin-induced apoptosis (p < 0.01), and alleviated cellular oxidative stress caused by cisplatin (p < 0.05). Furthermore, Z-lig activated NRF2/HO-1 signaling in cells treated with cisplatin (p < 0.05).Conclusion: Z-lig reduces cisplatin-induced nephrotoxicity via activation of NRF2/HO-1 signaling. Thus, Z-lig is a potential drug for the treatment of nephrotoxicity caused by cisplatin. Keywords: Z-ligustilide, Cisplatin, Nephrotoxicity, Oxidative stress, Apoptosis, Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


2011 ◽  
Vol 8 (3) ◽  
pp. 1451-1455
Author(s):  
Ramalingam Mahesh ◽  
Hyo Won Jung ◽  
Jun Hong Park ◽  
Yong-Ki Park

Ostericum koreanummaximowicz (Umbelliferae), a medicinal herb in Korean Oriental Medicine, has been applied to treat cold, headache, neuralgia and arthralgia. The ethyl acetate fraction ofO. koreanumroot was subjected toin vitroantioxidant activity with different methods for free radical scavenging activities. In addition, the cell viability and nitric oxide release assays were performed here for the first time in neuroblastoma (Neuro-2a) cell cultures. Among all the tested methods, the ethyl acetate fraction was expressed very active, exhibiting a good Trolox equivalent values and IC50, comparable to that of the commercial antioxidants, Trolox and ascorbic acid, respectively. The results showed that there was a reduction of cell viability by the fraction in a concentration dependent manner. These results suggest thatO. koreanumshows good antioxidant activitiesin vitroby inhibiting free radicals. These findings provide a rationale for thein vivotesting. Also, the major constituents behind the antioxidant mechanisms of this fraction warrant further study.


2021 ◽  
Vol 11 (5) ◽  
pp. 997-1002
Author(s):  
Chi Zhang ◽  
Yuanhe Wang ◽  
Chuan Hu ◽  
Kang Sun ◽  
Dingzhu Yu ◽  
...  

The damage of articular cartilage in osteoarthritis involves the oxidative stress and inflammation. The aim of the present study was to explore the role of plantamajoside (PM) in chondrocytes and elucidate the underlying mechanism. The cell viability following treatment with PM or lipopolysac-charide (LPS) was assessed by cell counting kit-8 (CCK-8). Enzyme-Linked Immunosorbent Assay (ELISA) was supplied to determine the levels of pro-inflammatory cytokines. Moreover, the oxidative stress-related markers were evaluated via assay kits. TUNEL assay was employed to stain the apoptotic cells. The components of nuclear factor-κB (NF-κB) pathway and NLRP3 inflammasome were estimated by western blot analysis. LPS-insulted cell viability of ATDC5 was restored by PM. PM alleviated the inflammatory response and oxidative stress of ATDC5 cells induced by LPS. Furthermore, it was found that the apoptotic cells were reduced following PM treatment. The protein levels of NF-κB, IκB kinase β (IKKβ) and NLRP3 inflammasome were decreased by PM. These results suggested that PM protected the ATDC5 cells from LPS stimulation, alleviated the inflammatory response may through regulating the NF-κB and NLRP3 inflammasome.


2017 ◽  
Vol 54 (4) ◽  
pp. 620-625 ◽  
Author(s):  
Anca S. Mesaros ◽  
Cristian Romanec ◽  
Michaela Mezaros ◽  
Marioara Moldovan ◽  
Ioana Baldea

The aims of our study were to assess the cytotoxic effect of five orthodontic bonding materials, in vitro, on HUVECs to study the induction of apoptosis and inflammatory response generated to assess the shear-bond strength of the 5 tested materials in order to quantify their performance. Standardized samples from each material were obtained and incubated with HUVEC cells for 24 and 72 h immersed in complete medium. Cell viability was determined by means of MTS method. Active caspase 3 and TNFa protein levels were measured through ELISA techniques. The shear-bond strength was tested on 60 extracted premolars which were bonded with the same type of bracket, using the 5 different materials. Statistical analysis Student T-tests, Chi-square and Anova tests were used for results interpretation. Cell viability was decreased with material exposure in a time dependent manner. All materials exerted cytotoxic effects, the experimental materials showed a significantly higher decrease in cell viability at the 72 h reading. Shear Bond strength was superior for the resin commercial bracket-bonding materials. The study shows that orthodontic adhesives� cytotoxicity and physical performance is related to their chemical properties and proves that all orthodontic practitioners should use freely their material of choice on condition they are aware of all its� properties.


2021 ◽  
Vol 8 (10) ◽  
pp. 220
Author(s):  
Flavia Girolami ◽  
Alessia Candellone ◽  
Watanya Jarriyawattanachaikul ◽  
Giorgia Meineri ◽  
Carlo Nebbia ◽  
...  

The treatment of choice for feline hyperthyroidism is the administration of the antithyroid drug methimazole. Both the endocrinopathy and the drug adverse reactions (e.g., hepatotoxicosis, gastrointestinal disorders, and renal injury) are partly due to oxidative stress and redox unbalance. This study investigated the free radical production and the impairment of the antioxidant barrier induced by methimazole in an in vitro model of feline renal epithelium. The protective effects of quercetin and resveratrol were also explored. CRFK cells were incubated with a methimazole concentration equivalent to the maximum plasma levels in orally treated cats (4 µM), in the presence or absence of either one of the two selected antioxidants at different time-points (up to 72 h). Cell viability, ROS production, GSH levels, and mRNA expression of antioxidant enzymes (i.e., CAT, SOD, GPx, and GST) were assessed. Methimazole impaired cell viability and increased ROS levels in a time-dependent manner. Similarly, GSH content and CAT, SOD, and GPx3 expression were higher compared with control cells. Such effects were significantly counteracted by quercetin. These results provide new insights about the mechanisms underlying the methimazole-related side effects frequently observed in hyperthyroid cats. They also support the use of quercetin in the management of feline hyperthyroidism.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jialin Duan ◽  
Jia Cui ◽  
Hongnan Zheng ◽  
Miaomiao Xi ◽  
Chao Guo ◽  
...  

Background. Saponin from Aralia taibaiensis (sAT) showed excellent antioxidative effects in several models; however, its effects on brain cells were unknown to us. The present study was designed to evaluate the protective effects of sAT on ischemia/reperfusion- (I/R-) induced injury and clarify its mechanisms. Methods. In vitro, HT22 cells were pretreated with sAT and then subjected to I/R. Apoptosis rate, mitochondrial function, and antioxidant proteins were measured. To clarify the mechanisms, siRNA were used. In vivo, sAT was pretreated through intragastric administration for 7 days and the I/R model was induced. The neurobehavioral scores, infarction volumes, and some cytokines in the brain were measured. Protein levels were investigated by Western blotting. Results. The results showed that sAT treatment significantly protected cells from I/R-induced cell apoptosis and mitochondrial dysfunction. The antioxidant protein levels were increased in a dose-dependent manner. Further study revealed that sAT induced the deacetylation and phosphorylation of PGC-1α and FOXO3a. sAT treatment also induced the phosphorylation levels of Akt and the expression levels of SIRT1. Using the specific targeted siRNA transfection, the interplay relationship between Akt, SIRT1, PGC-1α, and FOXO3a was verified. Furthermore, the same protective effects were also observed in rats subjected to I/R. Conclusion. sAT protected brain cells from I/R-induced mitochondrial oxidative stress and dysfunction through regulating the Akt/SIRT1/FOXO3a/PGC-1α pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Huanjin Song ◽  
Hao Wu ◽  
Jun Dong ◽  
Sihua Huang ◽  
Jintao Ye ◽  
...  

Ellagic acid (EA) was reported to play protective roles in rheumatoid arthritis (RA). It was found that the level of metastasis-associated gene 1 (MTA1)/histone deacetylase 1 (HDAC1) protein complex was downregulated by polyphenols in several human disorders. Notably, inhibition of MTA1 or HDAC1 has anti-inflammatory effects on RA. Therefore, our study is aimed at investigating whether EA prevents RA progression through regulating the MTA1/HDAC1 complex. Herein, the human fibroblast-like synoviocyte (FLS) cell line MH7A was treated with TNF-α to induce an inflammation model in vitro and then incubated with different concentrations of EA. Western blot analysis showed that EA reduced MTA1 expression in a dose-dependent manner in MH7A cells. Then, TNF-α-treated MH7A cells were incubated with EA alone or together with MTA1 overexpression plasmid (pcDNA-MTA1), and we found that EA inhibited proliferation, inflammation cytokine levels, and oxidative stress marker protein levels and promoted apoptosis in MH7A cells, while MTA1 overexpression abolished these effects. Moreover, coimmunoprecipitation assay verified the interaction between MTA1 and HDAC1. EA downregulated the MTA1/HDAC1 complex in MH7A cells. MTA1 knockdown inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells, while HDAC1 overexpression reversed these effects. Moreover, chromatin immunoprecipitation assay indicated that EA inhibited HDAC1-mediated Nur77 deacetylation. Rescue experiments demonstrated that Nur77 knockdown reversed the effects of EA on MH7A cell biological behaviors. Additionally, EA treatment attenuated arthritis index, paw swelling, synovial hyperplasia, and inflammation in collagen-induced arthritis (CIA) rats. In conclusion, EA inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells and alleviated the severity of RA in CIA rats though downregulating MTA1/HDAC1 complex and promoting HDAC1 deacetylation-mediated Nur77 expression.


2021 ◽  
Vol 11 (11) ◽  
pp. 2128-2136
Author(s):  
Weihua Liu ◽  
Xinli Wang ◽  
Liangqin Du ◽  
Yanlin Sun

Excitotoxicity caused by glutamate severely damages the central nervous system, contributing to the progress of neurodegenerative diseases. Remifentanil is an ultra-short acting synthetic α-opioid receptor agonist and it protects the body against oxidative stress. Oxidative stress is a causative factor for neuronal cell death, contributing to the pathogenesis of neurological diseases. More importantly, remifentanil has been confirmed to have neuroprotective effects on cerebral ischemia. Hence, the aim of the present study was to investigate the molecular mechanism underlying the effect of remifentanil on glutamate (Glu)-induced oxidative stress and inflammation in hippocampal cells. In present study, the cell viability was detected via CCk-8 assay. The cell apoptosis was evaluated by tunel assay. Western blot was performed for measurement of protein expression level. Generation of ROS level was detected by the ROS Activity Assay Kit (KA3842, Abnova) and DCF-DA staining method. MDA and SOD levels were detected by corresponding kits. The results from the present study suggested that remifentanil enhanced cell viability, reduced cell apoptosis rate and prevented oxidative stress in glutamate-induced HT22 cells. The PPARγ/HO-1 pathway was activated by remifentanil. After inhibition of PPARγ/HO-1 pathway, the anti-apoptosis and anti-oxidative stress effects of remifentanil were abolished. In conclusion, remifentanil has anti-apoptosis and anti-oxidative stress effects on glutamate-induced HT22 Cells via PPARγ/HO-1 pathway. Hence, remifentanil is a promising agent for attenuation of cytotoxicity induced by glutamate, providing a new strategy for treatment of excitotoxicity caused by glutamate in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document