Ambient Temperature as a Strong Zeitgeber of Circadian Rhythms in Response to Temperature Sensitivity and Poor Heat Dissipation Abilities in Subterranean African Mole-Rats

2021 ◽  
pp. 074873042110342
Author(s):  
Daniel W. Hart ◽  
Barry van Jaarsveld ◽  
Kiara G. Lasch ◽  
Kerryn L. Grenfell ◽  
Maria K. Oosthuizen ◽  
...  

Mammals have evolved circadian rhythms in internal biological processes and behaviors, such as locomotor activity (LA), to synchronize to the environmental conditions they experience. Photic entrainment of LA has been well established; however, non-photic entrainment, such as ambient temperature ( Ta), has received much less attention. To address this dearth of knowledge, we exposed two subterranean endothermic-homeothermic African mole-rat species, the solitary Cape mole-rat ( Georychus capensis [GC]) and social Mahali mole-rat ( Cryptomys hottentotus mahali [CHM]), to varying Ta cycles in the absence of light. We showed that the LA rhythms of these two species entrain to Ta cycles and that the majority of LA occurred during the coolest 12-h period. LA confined to the coolest Ta periods may be the direct consequence of the poor heat dissipation abilities of African mole-rats brought about by physiological and ecological constraints. Recently, it has been hypothesized that Ta is only a strong zeitgeber for circadian rhythms in species whose thermoregulatory abilities are sensitive to changes in Ta (i.e., heterotherms and ectotherms), which previously has excluded endothermic-homeothermic mammals. However, this study demonstrates that Ta is a strong zeitgeber or entrainer for circadian rhythms of LA in subterranean endothermic-homeothermic mammals as a consequence of their sensitivity to changes in Ta brought about by their poor heat dissipation abilities. This study reinforces the intimate link between circadian rhythms and thermoregulation and conclusively, for the first time, provides evidence that Ta is a strong zeitgeber for endothermic-homeothermic mammals.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


Author(s):  
Chenzhong Xu ◽  
Jin Zhang ◽  
Jie Zhang ◽  
Baohua Liu

AbstractN-acetyltransferase 10 catalyzes RNA N4-acetylcytidine (ac4C) modifications and thus regulates RNA stability and translation efficiency. However, the deacetylase for ac4C is unknown. SIRT7 was initially identified as an NAD+-dependent protein deacetylase and plays essential roles in genome stability, circadian rhythms, metabolism, and aging. In this study, we identified SIRT7 as a deacetylase of the ac4C of ribosomal (r)RNA for the first time and found it to be NAD+-independent. Our data highlight the important role of SIRT7 in rRNA ac4C modification and suggest an additional epitranscriptional regulation of aging.


2000 ◽  
Vol 123 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Robert J. Samuels ◽  
Nancy E. Mathis

The present study examines the relationship between thermal conductivity and planarity in polyimide films. The samples tested were specially prepared to range in orientation from three dimensionally random to highly planar. The molecular structure and orientation of the polyimide film have been characterized by polarizing microscope techniques, while the thermal conductivity measurements were done using a new rapid nondestructive technique. This correlation represents the first time thermal conductivity has been measured by modified hot wire techniques and related to the internal structure of polyimide. This work contributes to a deeper theoretical understanding of thermal conductivity and heat transfer mechanisms as they relate to orientation. Thermal conductivity evaluation could provide a new tool in the arsenal of structural characterization techniques. This relationship between thermal conductivity and orientation is key for applications of directional heat dissipation in the passive layers of chip assemblies. Such a correlation has potential to speed the development cycles of new materials during formulation as well as assure properties during production.


2021 ◽  
Author(s):  
Hanbang Liu ◽  
Danhua Yuan ◽  
Liping Yang ◽  
Jiacheng Xing ◽  
Shu Zeng ◽  
...  

The traditional zeolites used in air separation are generally N2-selective adsorbents. It was found for the first time that the O2/N2 adsorption selectivity can be reversed by directly decorating the...


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao Xin-Cai

AbstractPoly(N-isopropylacrylamide) hydrogels have been successfully modified by concentrated sulfuric acid for the first time. The modified hydrogels displayed faster, larger magnitude and hydration/dehydration dynamic response to temperature cycling without increasing the lower critical solution temperature (LCST). These contributions were attributed to sulphate ester groups resulting from terminal hydroxyl groups of poly(N-isopropylacrylamide). These results may lead to technological application for temperature-responsive thin film and microgel particles with higher surface-to-volume ratio.


2010 ◽  
Vol 281 (1) ◽  
pp. 66-73 ◽  
Author(s):  
N. C. Bennett ◽  
J. Van Sandwyk ◽  
H. Lutermann

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
G. B. Lebron ◽  
T. L. Tan

The integrated band intensities of ethylene (12C2H4) in the 640–3260 cm−1 region were determined by Fourier transform infrared (FTIR) spectroscopy. The infrared absorbance spectra of the ν7 and ν10, ν12, ν7+ν8, ν6+ν10, v11, and ν9 and ν2+ν12 bands of ethylene recorded at a resolution of 0.5 cm−1 were measured at an ambient temperature of 296 K at various vapor pressures ranging from 3×10−5 to 1×10−3 atm to obtain respective Beer-Lambert's law plots. The measured integrated band intensities in cm−1/cm atm were S(ν9andν2+ν12)=112.20±0.24, S(ν11)=55.35±0.14, S(ν12)=41.22±0.30, and S(ν7andν10)=328.66±16.55. In addition, the measured infrared band intensities of the ν7+ν8 and ν6+ν10 combination bands of ethylene are reported for the first time: S(ν7+ν8)=21.701±0.028 cm−1/cm atm and S(ν6+ν10)=2.568±0.025 cm−1/cm atm.


2005 ◽  
Vol 84 (2) ◽  
pp. 181-191 ◽  
Author(s):  
C VASICEK ◽  
M OOSTHUIZEN ◽  
H COOPER ◽  
N BENNETT

2018 ◽  
Vol 20 (42) ◽  
pp. 27162-27168 ◽  
Author(s):  
Sung Man Park ◽  
Hong Lae Kim ◽  
Chan Ho Kwon

Composition of the crotonaldehyde sample at ambient temperature was determined as 93.0%, 3.4%, 3.4%, and 0.2% for the tt-/tc-/ct-/cc-conformers, respectively, for the first time.


Sign in / Sign up

Export Citation Format

Share Document