scholarly journals Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite

2018 ◽  
Vol 33 (6) ◽  
pp. 876-890 ◽  
Author(s):  
Alisa Palaveniene ◽  
Sedef Tamburaci ◽  
Ceren Kimna ◽  
Kristina Glambaite ◽  
Odeta Baniukaitiene ◽  
...  

Recently, usage of marine-derived materials in biomedical field has come into prominence due to their promising characteristics such as biocompatibility, low immunogenicity and wide accessibility. Among these marine sources, cuttlebone has been used as a valuable component with its trace elemental composition in traditional medicine. Recent studies have focused on the use of cuttlebone as a bioactive agent for tissue engineering applications. In this study, hydroxyapatite particles were obtained by hydrothermal synthesis of cuttlebone and incorporated to cellulose scaffolds to fabricate an osteoconductive composite scaffold for bone regeneration. Elemental analysis of raw cuttlebone material from different coastal zones and cuttlebone-derived HAp showed that various macro-, micro- and trace elements – Ca, P, Na, Mg, Cu, Sr, Cl, K, S, Br, Fe and Zn were found in a very similar amount. Moreover, biologically unfavorable heavy metals, such as Ag, Cd, Pb or V, were not detected in any cuttlebone specimen. Carbonated hydroxyapatite particle was further synthesized from cuttlebone microparticles via hydrothermal treatment and used as a mineral filler for the preparation of cellulose-based composite scaffolds. Interconnected highly porous structure of the scaffolds was confirmed by micro-computed tomography. The mean pore size of the scaffolds was 510 µm with a porosity of 85%. The scaffolds were mechanically characterized with a compression test and cuttlebone-derived HAp incorporation enhanced the mechanical properties of cellulose scaffolds. In vitro cell culture studies indicated that MG-63 cells proliferated well on scaffolds. In addition, cuttlebone-derived hydroxyapatite significantly induced the ALP activity and osteocalcin secretion. Besides, HAp incorporation increased the surface mineralization which is the major step for bone tissue regeneration.

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 497 ◽  
Author(s):  
Moumita Ghosh ◽  
Michal Halperin-Sternfeld ◽  
Itzhak Grinberg ◽  
Lihi Adler-Abramovich

The high demand for tissue engineering scaffolds capable of inducing bone regeneration using minimally invasive techniques prompts the need for the development of new biomaterials. Herein, we investigate the ability of Alginate incorporated with the fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) peptide composite hydrogel to serve as a potential biomaterial for bone regeneration. We demonstrate that the incorporation of the self-assembling peptide, FmocFF, in sodium alginate leads to the production of a rigid, yet injectable, hydrogel without the addition of cross-linking agents. Scanning electron microscopy reveals a nanofibrous structure which mimics the natural bone extracellular matrix. The formed composite hydrogel exhibits thixotropic behavior and a high storage modulus of approximately 10 kPA, as observed in rheological measurements. The in vitro biocompatibility tests carried out with MC3T3-E1 preosteoblast cells demonstrate good cell viability and adhesion to the hydrogel fibers. This composite scaffold can induce osteogenic differentiation and facilitate calcium mineralization, as shown by Alizarin red staining, alkaline phosphatase activity and RT-PCR analysis. The high biocompatibility, excellent mechanical properties and similarity to the native extracellular matrix suggest the utilization of this hydrogel as a temporary three-dimensional cellular microenvironment promoting bone regeneration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 116 ◽  
Author(s):  
Arianna De Mori ◽  
Meena Hafidh ◽  
Natalia Mele ◽  
Rahmi Yusuf ◽  
Guido Cerri ◽  
...  

One-dimensional nanostructures, such as silver nanowires (AgNWs), have attracted considerable attention owing to their outstanding electrical, thermal and antimicrobial properties. However, their application in the prevention of infections linked to bone tissue regeneration intervention has not yet been explored. Here we report on the development of an innovative scaffold prepared from chitosan, composite hydroxyapatite and AgNWs (CS-HACS-AgNWs) having both bioactive and antibacterial properties. In vitro results highlighted the antibacterial potential of AgNWs against both gram-positive and gram-negative bacteria. The CS-HACS-AgNWs composite scaffold demonstrated suitable Ca/P deposition, improved gel strength, reduced gelation time, and sustained Ag+ release within therapeutic concentrations. Antibacterial studies showed that the composite formulation was capable of inhibiting bacterial growth in suspension, and able to completely prevent biofilm formation on the scaffold in the presence of resistant strains. The hydrogels were also shown to be biocompatible, allowing cell proliferation. In summary, the developed CS-HACS-AgNWs composite hydrogels demonstrated significant potential as a scaffold material to be employed in bone regenerative medicine, as they present enhanced mechanical strength combined with the ability to allow calcium salts deposition, while efficiently decreasing the risk of infections. The results presented justify further investigations into the potential clinical applications of these materials.


Author(s):  
Arianna De Mori ◽  
Meena Hafidh ◽  
Natalia Mele ◽  
Rahmi Yusuf ◽  
Guido Cerri ◽  
...  

One-dimensional nanostructures such as silver nanowires (AgNWs) have attracted considerable attention owing to their outstanding electrical, thermal and antimicrobial properties; however, their application in the prevention of infections linked to bone tissue regeneration interventions has not yet been explored. Here we report on the development of an innovative scaffold prepared from chitosan, composite hydroxyapatite and AgNWs (CS-HACS-AgNWs) having both bioactive and antibacterial properties. In vitro results highlighted the antibacterial potential of AgNWs against both gram-positive and gram-negative bacteria. The CS-HACS-AgNWs composite scaffold demonstrated suitable Ca/P deposition, improved gel strength, reduced gelation time, and sustained Ag+ release within therapeutic concentrations. Antibacterial studies showed that the composite formulation was capable of inhibiting bacterial growth in suspension and of completely preventing biofilm formation on the scaffold in the presence of resistant strains. The hydrogels were also shown to be biocompatible, allowing cell proliferation. In summary, the developed CS-HACS-AgNWs composite hydrogels demonstrated significant potential as a scaffold material to be employed in bone regenerative medicine, as it presents enhanced mechanical strength combined with the ability to allow calcium salts deposition, while efficiently decreasing the risk of infections. The results presented justify further investigations into potential clinical applications of these materials.


2018 ◽  
Vol 32 (10) ◽  
pp. 1406-1420 ◽  
Author(s):  
Mirana Taz ◽  
Sang Ho Bae ◽  
Hae Il Jung ◽  
Hyun-Deuk Cho ◽  
Byong-Taek Lee

A variety of synthetic materials are currently in use as bone substitutes, among them a new calcium phosphate-based multichannel, cylindrical, granular bone substitute that is showing satisfactory biocompatibility and osteoconductivity in clinical applications. These cylindrical granules differ in their mechanical and morphological characteristics such as size, diameter, surface area, pore size, and porosity. The aim of this study is to investigate whether the sizes of these synthetic granules and the resultant inter-granular spaces formed by their filling critical-sized bone defects affect new bone formation characteristics and to determine the best formulations from these individual types by combining the granules in different proportions to optimize the bone tissue regeneration. We evaluated two types of multichanneled cylindrical granules, 1 mm and 3 mm in diameter, combined the granules in two different proportions (wt%), and compared their different mechanical, morphological, and in vitro and in vivo biocompatibility characteristics. We assessed in vitro biocompatibility and cytotoxicity using MC3T3-E1 osteoblast-like cells using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal imaging. In vivo investigation in a rabbit model indicated that all four samples formed significantly better bone than the control after four weeks and eight weeks of implantation. Micro-computed tomography analysis showed more bone formation by the 1 mm cylindrical granules with 160 ± 10 µm channeled pore and 50% porosity than the other three samples ( p<.05), which we confirmed by histological analysis.


2013 ◽  
Vol 668 ◽  
pp. 565-570
Author(s):  
Jian Ming Zhang ◽  
Rui Xin Li ◽  
Ting Ting Ren ◽  
Cai Hong Shi ◽  
Hao Li ◽  
...  

Mechanical stimulus is one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. It is difficult to directly measure stress and strain inside the scaffold, so we decide to use FEA (finite element analysis) to obtain the strain result. A uniform displacement equivalent to an uniaxial strain of 2500、3000、3500、4000、4500、5000με was applied to the solid material phase. These results suggested that apparent strain of 3000με was best suit to the physiology environment, which including more inner strain elements between 1000 and 3000με than others. When the strain more than 3000με, the number of nodes of more than 4000 μ ε increased obviously. This will cause damage to cells which adhesion in support of the pore wall. In vitro, MC3T3-E1 preosteoblast cells were used to investigate cell attachment, spreading and proliferation on the scaffolds via SEM (scanning electron microscopy). The results showed that cells could adhesion and proliferation well after 7 and 14 days under the dynamic loading of 3000με.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Zou ◽  
Zhongmin Shi ◽  
Hongwei Xu ◽  
Xiaolin Li

In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs) to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum) and Platelet-rich plasma (PRP)/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation.


2019 ◽  
Vol 33 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
Cornelia Wiegand ◽  
Martin Abel ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Michael Zieger ◽  
...  

Background Application of controlled in vitro techniques can be used as a screening tool for the development of new hemostatic agents allowing quantitative assessment of overall hemostatic potential. Materials and methods Several tests were selected to evaluate the efficacy of cotton gauze, collagen, and oxidized regenerated cellulose for enhancing blood clotting, coagulation, and platelet activation. Results Visual inspection of dressings after blood contact proved the formation of blood clots. Scanning electron microscopy demonstrated the adsorption of blood cells and plasma proteins. Significantly enhanced blood clot formation was observed for collagen together with β-thromboglobulin increase and platelet count reduction. Oxidized regenerated cellulose demonstrated slower clotting rates not yielding any thrombin generation; yet, led to significantly increased thrombin-anti-thrombin-III complex levels compared to the other dressings. As hemostyptica ought to function without triggering any adverse events, induction of hemolysis, instigation of inflammatory reactions, and initiation of the innate complement system were also tested. Here, cotton gauze provoked high PMN elastase and elevated SC5b-9 concentrations. Conclusions A range of tests for desired and undesired effects of materials need to be combined to gain some degree of predictability of the in vivo situation. Collagen-based dressings demonstrated the highest hemostyptic properties with lowest adverse reactions whereas gauze did not induce high coagulation activation but rather activated leukocytes and complement.


2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Sofia Stromeyer ◽  
Daniel Wiedemeier ◽  
Albert Mehl ◽  
Andreas Ender

The purpose of this in vitro study was to compare the time efficiency of digital chairside and labside workflows with a conventional workflow for single-unit restorations. The time efficiency in this specific sense was defined as the time, which has to be spent in a dental office by a dental professional performing the relevant steps. A model with interchangeable teeth on position 36 was created. These teeth were differently prepared, responding to several clinical situations to perform single-unit restorations. Different manufacturing techniques were used: For the digital workflows, CEREC Omnicam (CER) and Trios 3 (TN/TI) were used. The conventional workflow, using a dual-arch tray impression technique, served as the control group. For the labside workflow (_L) and the conventional impression procedure (CO), the time necessary for the impressions and temporary restorations was recorded and served as operating time. The chairside workflow time was divided by the time for the entire workflow (_C) including scan, design, milling and finishing the milled restoration, and in the actual working time (_CW) leaving out the chairside milling of the restoration. Labside workflow time ranged from 9 min 27 s (CER_L) to 12 min 41 s (TI_L). Entire chairside time ranged from 43 min 35 s (CER_C) to 58 min 43 s (TI_C). Pure chairside working time ranged from 15 min 21 s (CER_CW) to 23 min 17 s (TI_CW). Conventional workflow time was 10 min 39 s (CO) on average. The digital labside workflow and the conventional workflow require a similar amount of time. The digital chairside workflow is more time consuming.


Sign in / Sign up

Export Citation Format

Share Document