Surface-treated short sisal fibers and halloysite nanotubes for synergistically enhanced performance of polypropylene hybrid composites

2020 ◽  
pp. 089270572094606
Author(s):  
Prakash Krishnaiah ◽  
Sivakumar Manickam ◽  
Chantara Thevy Ratnam ◽  
MS Raghu ◽  
L Parashuram ◽  
...  

Polypropylene (PP) composites were prepared by reinforcing with suitable hybrid fillers such as short sisal fibers treated with an alkali and high-intensity ultrasound (HIU) and halloysite nanotubes (HNTs) modified with 3-aminopropyltriethoxysilane. The synergistic effect of surface-treated short sisal fibers and silane-grafted HNTs were systematically evaluated through morphological, mechanical, dynamic mechanical, and thermal characterization. Alkali and HIU treatments of short sisal fibers drastically enhanced the interaction between sisal fibers and silane-grafted HNTs, which improved the interfacial adhesion between the filler system and the PP matrix. Scanning electron microscopic images indicated the continuity and smoothness of the hybrid composite surfaces. Dynamic mechanical analysis confirmed improved interactions between the hybrid filler system and the matrix, leading to significantly enhanced storage modulus in the hybrid composites. Therefore, the interfacial adhesion between the fillers and the matrix plays a significant role in improving the mechanical, dynamic mechanical, and thermal properties of polymer composites.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Muhamad Hasfanizam Mat Yazik ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohammad Jawaid ◽  
Abd Rahim Abu Talib ◽  
Norkhairunnisa Mazlan ◽  
...  

The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E’), loss modulus (E”), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Heitor Luiz Ornaghi ◽  
Alexandre Sonaglio Bolner ◽  
Rudinei Fiorio ◽  
Ademir Jose Zattera ◽  
Sandro Campos Amico

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 866 ◽  
Author(s):  
Alexandre L. Pereira ◽  
Mariana D. Banea ◽  
Jorge S.S. Neto ◽  
Daniel K.K. Cavalcanti

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.


2019 ◽  
Vol 39 (4) ◽  
pp. 326-335 ◽  
Author(s):  
Naman Jain ◽  
Shubhan Ali ◽  
Vinay K. Singh ◽  
Komal Singh ◽  
Nitesh Bisht ◽  
...  

AbstractThe objective of this investigation was to fabricate cross-linked polyvinyl alcohol (PVA) based laminate composites reinforced with biaxial cotton sheets. Cross-linking was done with sulfuric acid, to overcome the water solubility of PVA. A water uptake test was performed to evaluate the effect of cross-linking on the water absorption properties of the composites. Morphology, distribution and bonding between the matrix and reinforcement of the fabricated composites were studied using scanning electron microscopy. Mechanical properties such as the tensile strength (TS), modulus of elasticity and elongation of the fabricated composites material were evaluated. There was about a 56.25% increase in the TS of the cross-linked composite as compared to the neat PVA, and at 64 wt.% of cotton fiber, there was about a 56% increase in the TS as compared to the cross-linked PVA. The thermal degradation analysis of fabricated composites material was carried out by thermogravimetric analysis. The thermal stability increased with increase in cotton fiber wt.%. The viscoelastic properties of the fabricated composites material were determined by dynamic mechanical analysis. The effects of stress (4 MPa, 6 MPa and 8 MPa) and temperature (20°C and 40°C) on creep and recovery behavior of the laminated composites were studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus ◽  
...  

The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA)/Polycaprolactone (PCL) blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two Tg of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology.


2017 ◽  
Vol 50 (3) ◽  
pp. 204-221
Author(s):  
Mona Taheri ◽  
Jalil Morshedian ◽  
Hossein Ali Khonakdar ◽  
Jacques WM Noordermeer

The effect of chlorinated polyethylene (CPE) on the compatibilization and thermal properties of styrene-acrylonitrile copolymers (SAN)/Ethylele-Propylene-Diene-polyMethylene rubber (EPDM) blends (80/20) was investigated. Two different mixing procedures were employed, that is, single- and two-step blending. In the single-step process, EPDM was melt blended with CPE and SAN simultaneously, which led to a droplet morphology. In the two-step process, first, a masterbatch of EPDM and CPE in SAN was prepared, and then mixed with further amounts of SAN and CPE in order to reach the same fixed blend ratio of 80/20 for SAN/EPDM. The morphology changed from EPDM droplets for the one-step mixing to co-continuous for the two-step blending process. This morphological change was reflected in a change of the complex modulus. The characteristics of thermogravimetric analysis (TGA) curves (T1%, T5%, T30%, and T50%) were examined, as indicators for improved thermal stability of the blends. The intermolecular interaction characterized by the Kwei equation showed higher values for the blends prepared by the two-step mixing procedure. The dynamic mechanical analysis supported the occurrence of chain scission in the SAN phase at the beginning of aging and cross-linking of SAN at higher temperatures and longer times as a result of cyclization of CN groups in SAN.


Sign in / Sign up

Export Citation Format

Share Document