A Comparative Study on the Impact Resistance of Composite Laminates and Sandwich Panels

1997 ◽  
Vol 10 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Rocco Ferri ◽  
Bhavani V. Sankar
2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2021 ◽  
Author(s):  
H. R. TEWANI ◽  
DILEEP BONTHU ◽  
H. S. BHARATH ◽  
MRITYUNJAY DODDAMANI ◽  
P. PRABHAKAR

Polymer-based syntactic foams find use in the marine industry as primary structural materials due to their inherent lightweight nature and enhanced mechanical properties relative to pure HDPE. 3-D printing these materials circumvents the use of joining assemblies, enabling the production of complex shapes as standalone structures. Although the quasi-static response of these 3D printed foams has been well studied independently in recent years, their dynamic impact resistance and tolerance as potential core material for sandwich panels have not been the focus. Moreover, 3D printing is known to impart directionality in the printed syntactic foams, which may introduce failure mechanisms typically not observed in molded foams. It is therefore important to investigate the mechanics of 3-D printed syntactic foam core composite sandwich structures under impact loading and characterize their failure mechanisms for establishing dynamic impact resistance. To this end, 3-D printed syntactic foams have been developed using rasters of High-Density Polyethylene (HDPE) and Glass MicroBalloon (GMB) fillers by adopting the Fused Raster Fabrication (FFF) technique. The current study is performed to assess the impact performance of these composite foam cores based on the volume fraction of fillers and print orientation. The weight percentage of GMB fillers in printed specimens ranges from 0% to 60% in increments of 20%. This study presents the impact response of these composite sandwich panels at different energy levels, in compliance with ASTM D7136/D7136M - 20. Observations suggest that an increase in GMB % in HDPE matrix improves the impact performance in terms of the peak load of the material, but the failure behavior becomes brittle to an extent. Observing the failed specimens under a Micro-CT scanner captures the failure morphologies and helps characterize failure processes during impact. It is noticed that core materials with higher GMB content are prone to individual raster breakage and delamination at the back face, in addition to debonding between individual rasters. Specimens printed along the longer dimension (y-direction) impart more warping in the final sandwich structures than that of specimens printed along the shorter dimension (x-direction). Therefore, they are more susceptible to delamination at the back face. Addition of GMB fillers mitigate the tendency of the sandwich panels to warp.


2010 ◽  
Vol 168-170 ◽  
pp. 1149-1152
Author(s):  
Xiao Xiong Zha ◽  
Hong Xin Wang

The low velocity impact response of sandwich panels at different energy levels has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Impact parameters like maximum impact force and the extent of the damage were evaluated and compared for different types of sandwich panels. Finite elements simulations have been undertaken using the LS-DYNA software; the results of FE simulations have a good agreement with the experiments. It shows that, the impact force increased with thickness of face-sheets and foam core, the extent of the damage increased with the impact energy, sandwich panels with steel face sheet has a good impact resistance in comparison with sandwich panel with aluminum face sheets.


2016 ◽  
Vol 39 (3) ◽  
pp. 889-899 ◽  
Author(s):  
K PAZHANIVEL ◽  
G B BHASKAR ◽  
A ELAYAPERUMAL ◽  
P ANANDAN ◽  
S ARUNACHALAM

2016 ◽  
Vol 19 (5) ◽  
pp. 572-594 ◽  
Author(s):  
Peiwen Zhang ◽  
Xin Li ◽  
Tao Jin ◽  
Zhihua Wang ◽  
Longmao Zhao

The dynamic response of circular sandwich panels with aluminium honeycomb and corrugated cores under projectile impact was investigated experimentally and numerically. Impulse loaded on the panel was controlled by projectile launching velocity and the deformation process of sandwich panels was recorded by a high-speed camera in the experiments. Typical deformation/failure modes of face-sheets and cores were obtained and analysed. The back face-sheet deflections and strain histories of face-sheets were measured and discussed. A parametric study was conducted by LS-DYNA 3D to analyse the effect of geometrical configuration on energy absorption mechanism and back face-sheet permanent deflection of circular sandwich panels. The results indicated that the impact resistance of the structure was sensitive to geometrical configuration. Increasing face-sheet thickness and core relative density significantly improved sandwich structure impact resistance. Increasing foil thickness improved the panel impact resistance more efficiently than decreasing wall side length. The results have important reference value to guide engineering application of the sandwich structure subjected to impact loading.


2012 ◽  
Vol 488-489 ◽  
pp. 501-505
Author(s):  
Zafarullah Khan

In recent years, for the purpose of achieving enhanced mechanical properties of fiber reinforced composites, hybridized composites containing a combination of two or more types of fiber reinforcements have been explored. Perhaps the main parameter which controls the mechanical properties of the hybrid composites is the flexibility to arrange the hybrid fiber reinforcement layers in a variety of ways within the hybrid laminate. In this study, low velocity drop weight impact resistance of plain weave woven glass and carbon hybrid composites has been investigated. The study explores the effects of intra-ply arrangement sequence on the impact resistance of 24 and 32 ply laminates in which glass and the carbon plies have been differently stacked. The results show that impact resistance of woven glass fiber composites can be enhanced by hybridizing woven glass fabrics with woven carbon fabrics. The results indicate that the impact resistance is a function of the positions of the glass and carbon layers in the hybridized inter ply laminates.


2015 ◽  
Vol 40 (4) ◽  
pp. 1111-1122 ◽  
Author(s):  
K. Pazhanivel ◽  
G. B. Bhaskar ◽  
A. Elayaperumal ◽  
P. Anandan ◽  
S. Arunachalam

Author(s):  
Mohammad Alemi-Ardakani ◽  
Abbas S. Milani ◽  
Spiro Yannacopoulos ◽  
David Trudel-Boucher ◽  
Golnaz Shokouhi

Popularity and application of composite materials are increasing in several industries including transportation, construction and aerospace. The mechanical properties of these materials should be known to engineers to be able to design/select new products. Impact resistance is one of the properties which have been studied extensively over the past years and still is an ongoing topic in composites research. Since analytical solutions have not been fully developed for the impact characterization of anisotropic materials, researchers often perform mechanical testing in conjunction with visual inspection methods to investigate the impact behavior of composite materials. The present study shows that flexural toughness can be used as a parameter in the design/material selection stage in the evaluation of pre- and post-impact damage of composite laminates. A series of drop-weight impact tests, using a 200J energy level, were performed on specimens made of four different stacking configurations of TWINTEX® and unidirectional laminates (polypropylene and glass fiber commingled composites) according to ASTM D7136. The damaged areas of the impacted specimens were measured using image analysis. Four-point flexural testing was then carried out, based on ASTM D7264, on both non-impacted and impacted specimens. Damaged area and flexural toughness, along with a set of other commonly used mechanical properties, were selected as measures for damage evaluation. Comparison of results before and after impact and under different criteria showed that in the present case study, visual inspection is not sufficient in predicting the post-impact properties of the tested specimens and can be misleading. On the other hand, flexural toughness could give a much clearer perspective on the extent of post-impact resistance of the specimens.


Sign in / Sign up

Export Citation Format

Share Document