Preparation and properties of bismaleimide resin blended with alkynyl-terminated modifiers

2021 ◽  
pp. 095400832110341
Author(s):  
Hui Zhang ◽  
Linxiang Wang ◽  
Qiaolong Yuan ◽  
Qing Zheng ◽  
Liqiang Wan ◽  
...  

A kind of modified bismaleimide resin, with good processability, heat resistance, and impact strength was developed, using 4,4′-dipropargyloxydiphenyl ether (DPEDPE), N-(4-propargyloxyphenyl)maleimide (4-PPM), and 3-ethynylphenyl maleimide (3-EPM) as modifiers. The DPEDPE, 4-PPM, and 3-EPM were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR) and 1H-nuclear magnetic resonance (1H NMR), and used to modify the N,N′-(4,4′-diphenylmethane)bismaleimide (BDM)/2,2′-diallyl bisphenol A (DABPA) resin system (BD) to obtain the different blend resin systems of DPEDPE-modified BD (BDD), 4-PPM-modified BD (BDP), and 3-EPM-modified BD (BDE). The curing temperature of BD resin increases with increase of the alkynyl-terminated modifier content. The processability of BD resin was improved with addition of the propargyloxy-terminated compounds. The temperature of 5% weight loss, residual yield at 800°C and glass transition temperature of the cured BD resin increase with increase of the alkynyl-terminated modifier content and can reach 443°C, 46.7% and higher than 380°C. The tensile strength of the cured BD resin decreases with increase of alkynyl-terminated modifier content. The impact strength of the cured BD resin increases with increase of the propargyloxy-terminated compound content and can increase by 65%. The tensile strength, elastic modulus, and impact strength of the cured BD resin blended with DPEDPE can be 73.7 MPa, 4.1 GPa, and 19.6 kJ m−2, respectively. Moreover, the cured BD resin blended with DPEDPE has good water absorption resistance.

2011 ◽  
Vol 471-472 ◽  
pp. 191-196 ◽  
Author(s):  
Saad A. Mutasher ◽  
Adrian Poh ◽  
Aaron Mark Than ◽  
Justin Law

Increasing worldwide environmental awareness is an encouraging scientific research into the development of cheaper, more environmentally friendly and sustainable construction and packaging materials. Kenaf fibre is a natural fibre which is growing in popularity due environmental issues and its properties as filler. Epoxy is a versatile thermosetting polymer which has a low curing temperature and used in making carbon fibre and glass composites. In this paper the properties of kenaf bast fibre epoxy reinforced composite have been investigated. The effects of alkali surface treatment of the fiber on the composite properties are also investigated. A hand layup method was use to fabricate the test specimens. Generally, all the treated fibre composites performed better than the untreated fibre with an improvement approximately 5% to 10%. Epoxy has the highest tensile strength and flexural strength among all specimens. The 24wt% treated kenaf fibre composites has the highest tensile strength, 27.72MPa and flexural strength, 56.91MPa. The kenaf fiber weight fraction of 40% gave the highest impact strength. The impact strength of the 40wt% kenaf fiber increased 14.3% after alkali treatment.


2016 ◽  
Vol 51 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Wei Li ◽  
Hongyu Li ◽  
Xinguo Yang ◽  
Wei Feng ◽  
Hongyun Huang

This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide–epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide–epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


1967 ◽  
Vol 40 (3) ◽  
pp. 801-805 ◽  
Author(s):  
Lawrence E. Nielsen

Abstract By the use of simple models of filled plastics, approximate equations are derived for elongation to break in the case of perfect adhesion between the phases and for the tensile strength in the case of no adhesion between the polymer and filler phases. By combining these equations with equations for the modulus (assuming Hookean behavior) all the stress strain properties can be derived, including rough estimates of the impact strength, as a function of filler concentration. The theory predicts a very rapid decrease in elongation to break as filler concentration increases, especially with good adhesion; it is also predicted that the tensile strength of a filled polymer can be greater than that of an unfilled polymer.


2020 ◽  
Vol 856 ◽  
pp. 29-35
Author(s):  
Sweety Mahanta ◽  
M. Chandrasekaran ◽  
Sutanu Samanta

Aluminium matrix composites (AMCs) have emerged as the substitute for the monolithic (unreinforced) materials over the past few decades. The applications of AMCs are common in automotive, aerospace, defence and biomedical sectors due to its lower weight, high strength, high resistance against corrosion and high thermal and electrical conductivity. In this work, it is aimed fabricate a new class Al 7075 based hybrid composites reinforcing with nanoparticulates suitable for automotive application. Al7075 reinforced with fixed quantity of boron carbide (B4C) (1.5 wt.%) and varying wt % of flyash (0.5 wt.%, 1.0 wt.%, 1.5 wt.%) is fabricated using ultrasonic-assisted stir casting technique. Physical and mechanical characterization such as density, porosity, micro hardness, tensile strength and impact strength were estimated for three different compositions. The tensile strength and percentage increase in hardness value of the nanocomposite Al7075-B4C (1.5 wt. %)-flyash (0.5 wt. %): HNC3 found maximum as 294 MPa and 32.93%. In comparison with Al7075 alloy the impact strength of HNC3 shows the highest percentage of 9.31% respectively.


2016 ◽  
Vol 29 (10) ◽  
pp. 1199-1208 ◽  
Author(s):  
Dezhi Wang ◽  
Xin Wang ◽  
Lizhu Liu ◽  
Chunyan Qu ◽  
Changwei Liu ◽  
...  

Structural materials with excellent toughness, a wide processing window, outstanding mechanical performance, and high thermal stability are highly desired in engineering. This work reports a novel bismaleimide (BMI) resin system fabricated using bis[4-(4-maleimidephen-oxy)phenyl)]propane (BMPP), 1-(2-methyl-5-(2,5-dioxo-2H-pyrrol-1(5 H)-yl) phenyl)-1H-pyrrole-2,5-dione (BTM), and diallyl bisphenol A (DABPA) by a melt method. The behaviors of the BTM/BMPP/DABPA resin were modified by adding vinyl-terminated butadiene acrylonitrile (VTBN) in various amounts. The cured BTM/BMPP/DABPA/VTBN resin system exhibited all of the abovementioned desirable properties. Excellent performance was achieved by the post-cured BMI resin containing 6 phr of VTBN (VTBN-6). The glass transition temperature ( Tg) and the 5% weight loss temperature of VTBN-6 were 278°C and 408°C, respectively. Relative to VTBN-0 (BMI resin without VTBN), the impact strength of cured VTBN-6 (12.32 KJ/m2) improved by 45.6%, and the fracture toughness values, KIC and GIC, increased by 48.7% and 26%, respectively. Moreover, the prepolymer of VTBN-6 exhibited low viscosity over a wide temperature range (70–200°C) under dynamic conditions and for an extended time (70 min; 75% improvement over VTBN-0) in an isothermal test. These results confirm the wide processing window of VTBN-6. The high toughness of the VTBN-containing BMI resin was compatible with other excellent performances of the modified resin.


2011 ◽  
Vol 236-238 ◽  
pp. 1725-1730 ◽  
Author(s):  
Wei Jen Chen ◽  
Ming Yuan Shen ◽  
Yi Luen Li ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

This study used carbon aerogels (CA) and phenolic resin in fixed proportations to produce nano high polymer resin, and used poly ehtylene oxide (PEO) as the modifying agent for phenolic resin to improve the mechanical properties of phenolic resin and promote the surface conductivity. The prepared nano high polymer resin and carbon cloth were made into nano-prepreg by using ultrasonic impregnation method, and a nano-prepreg composite material was prepared by using hot compacting and cut to test pieces to measure its mechanical properties and surface conductivity as well as the influence of temperature-humidity environment (85°C/168hr and 85°C/85%RH/168hr) on mechanical properties. The result showed that the surface conductivity increased by 64.55%, the tensile strength at room temperature increased by 35.7%, the flexural strength increased by 18.4%, and the impact strength increased by 101%. In hot environment (85°C/168hr), the tensile strength decreased by 23.8%, the flexural strength increased by 3.1%, and the impact strength increased by 84.6%. In high temperature-high humidity environment (85°C/85% RH/168hr), the tensile strength decreased by 29.6%, the flexural strength decreased by 17%, and the impact strength increased by 95.7%.Introduction


2013 ◽  
Vol 575-576 ◽  
pp. 203-208
Author(s):  
Hong Xing Xu ◽  
Xin Hua Yuan ◽  
En Bo Zhu ◽  
Shuang Lian Li ◽  
Ling Chen ◽  
...  

The polytetrafluoroethylene (PTFE) matrix composites which filled with polyphenylene sulfide (PPS) fiber, poly-p-phenelenferephthalamide (PPTA) fibre or glass fiber (GF)) and graphite at various mass fractions were prepared by the processes of mechanical blending, compression molding and sintering. The mechanical properties of the composites, such as tensile strength, impact strength and hardness were investigated. The results show that tensile strength and elongation at break markedly decrease but elasticity increases by filling with fibers. Impact strength decreases by filling with PPS and GF, and the composite displays brittle characteristic. However, the impact strength rapidly increases by filling with PPTA fiber. Hardness increases with the fibers content increases, and decreases with graphite content increases. Filling graphite into PTFE has light effect on the impact and tensile strength of composites. The tribological properties of the composites were investigated on M-2000 wear tester at dry friction condition. The wear mechanism was also discussed and the wear surfaces were examined by SEM. The result indicates that fibers which diffused in PTFE matrix wind with PTFE molecule chain, and then form grid structure. The load-bearing capacity of composites can be obviously enhanced and the trend of block fragmentations slide is inhibited, so that the tribological properties are improved markedly.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Nina Graupner ◽  
Jörg Müssig

The present study focuses on a comparison between different cellulose fiber-reinforced thermoplastics. Composites were produced with 30 mass-% lyocell fibers and a PLA or PP matrix with either an injection (IM) or compression molding (CM) process. Significant reinforcement effects were achieved for tensile strength, Young’s modulus, and Shore D hardness by using lyocell as reinforcing fiber. These values are significantly higher for PLA and its composites compared to PP and PP-based composites. Investigations of the fiber/matrix adhesion show a better bonding for lyocell in PLA compared to PP, resulting in a more effective load transfer from the matrix to the fiber. However, PLA is brittle while PP shows a ductile stress-strain behavior. The impact strength of PLA was drastically improved by adding lyocell while the impact strength of PP decreased. CM and IM composites do not show significant differences in fiber orientation. Despite a better compaction of IM composites, higher tensile strength values were achieved for CM samples due to a higher fiber length.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document