Design of an optically accessible turbulent combustion system

Author(s):  
Mohammad A Hossain ◽  
Ahsan Choudhuri ◽  
Norman Love

In order to design the next generation of gas turbine combustors and rocket engines, understanding the flame structure at high-intensity turbulent flows is necessary. Many experimental studies have focused on flame structures at relatively low Reynolds and Damköhler numbers, which are useful but do not help to provide a deep understanding of flame behavior at gas turbine and rocket engine operating conditions. The current work is focused on the presentation of the design and development of a high-intensity (Tu = 15–30%) turbulent combustion system, which is operated at compressible flow regime from Mach numbers of 0.3 to 0.5, preheated temperatures up to 500 K, and premixed conditions in order to investigate the flame structure at high Reynolds and Damköhler numbers in the so-called thickened flame regime. The design of an optically accessible backward-facing step stabilized combustor was designed for a maximum operating pressure of 0.6 MPa. Turbulence generator grid was introduced with different blockage ratios from 54 to 67% to generate turbulence inside the combustor. Optical access was provided via quartz windows on three sides of the combustion chamber. Extensive finite element analysis was performed to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section is designed and presented in this paper. Separate cooling subsystem designs are also presented. A 10 kHz time-resolved particle image velocimetry system and a 3 kHz planer laser-induced fluorescence system are integrated with the system to diagnose the flow field and the flame, respectively. The combustor utilizes a UNS 316 stainless steel with a minimum wall thickness of 12.5 mm. Quartz windows were designed with a maximum thickness of 25.4 mm resulting in an overall factor of safety of 3.5.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


1968 ◽  
Vol 72 (696) ◽  
pp. 1087-1094 ◽  
Author(s):  
F. J. Bayley ◽  
A. B. Turner

It is well known that the performance of the practical gas turbine cycle, in which compression and expansion are non-isentropic, is critically dependent upon the maximum temperature of the working fluid. In engines in which shaft-power is produced the thermal efficiency and the specific power output rise steadily as the turbine inlet temperature is increased. In jet engines, in which the gas turbine has so far found its greatest success, similar advantages of high temperature operation accrue, more particularly as aircraft speeds increase to utilise the higher resultant jet velocities. Even in high by-pass ratio engines, designed specifically to reduce jet efflux velocities for application to lower speed aircraft, overall engine performance responds very favourably to increased turbine inlet temperatures, in which, moreover, these more severe operating conditions apply continuously during flight, and not only at maximum power as with more conventional cycles.


Author(s):  
Harald H. W. Funke ◽  
Nils Beckmann ◽  
Jan Keinz ◽  
Sylvester Abanteriba

Abstract The dry-low-NOx (DLN) micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently, the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The nonpremixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 vol %) micromix (MMX) combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel MMX combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas, the evaluated dual-fuel MMX prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.


Author(s):  
K. K. Botros ◽  
H. Golshan ◽  
D. Rogers ◽  
B. Sloof

Gas turbine (GT) engines employed in natural gas compressor stations operate in different modes depending on the power, turbine inlet temperature and shaft speeds. These modes apply different sequencing of bleed valve opening on the air compressor side of the engine. Improper selection of the GT and the driven centrifugal gas compressor operating conditions can lead to larger bleed losses due to wider bleed valve openings. The bleed loss inevitably manifests itself in the form of higher overall heat rate of the GT and greater engine emission. It is therefore imperative to determine and understand the engine and process conditions that drive the GT to operate in these different modes. The ultimate objective is to operate the engine away from the inefficient modes by adjusting the driven gas compressor parameters as well as the overall station operating conditions (i.e. load sharing, control set points, etc.). This paper describes a methodology to couple the operating conditions of the gas compressor to the modes of GT bleed valve opening (and the subsequent air bleed rates) leading to identification of the operating parameters for optimal performance (i.e., best overall efficiency and minimum CO2e emission). A predictive tool is developed to quantify the overall efficiency loss as a result of the different bleed opening modes, and map out the condition on the gas compressor characteristics. One year’s worth of operating data taken from two different compressor stations on TransCanada Pipelines’ Alberta system were used to demonstrate the methodology. The first station employs GE-LM1600 gas turbine driving a Cooper Rolls-RFBB-30 centrifugal compressor. The second station employs GE-LM-2500+ gas turbine driving NP PCL-800/N compressor. The analysis conclusively indicates that there are operating regions on the gas compressor maps where losses due to bleed valves are reduced and hence CO2 emissions are lowered, which presents an opportunity for operation optimization.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Katsuhiko Sugiyama ◽  
Youichirou Ohkubo

A low emission combustor for a 100kW ceramic gas turbine, which is intended to meet Japanese emission standards for gasoline passenger cars, has been designed and subjected to initial performance tests. A prevaporization-premixing combustion system was chosen as the most suitable system for the combustor. The detailed combustor design, including the use of ceramic components and fuel injectors, was pursued taking into account the allowable engine dimensions for vehicle installation. In the initial performance tests conducted at a combustor inlet temperature of 773K, a low NOx level was obtained that satisfied the steady state target at this temperature level.


Author(s):  
Xun Wang ◽  
Yunhan Xiao

A co-production system based on FT synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of low temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline and LPG. Tail gas composed of unconverted syngas and F-T light component was fed to gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity, expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil’s two step pilot plant was applied. This model proposed triple chain-length-dependent chain growth factors and set up correlations among reaction temperature with wax yield, methane yield, and C2-C22 paraffin and olefin yields. Oxygenates in hydrocarbon phase, water phase and vapor phase were also correlated with methane yield. It was suitable for syngas, iron catalyst and slurry bed. It can show the effect of temperature on products’ selectivity and distribution. Deviations of C5+ components yields and distributions with reference data were less than 3%. To light gas components were less than 2%. User models available to predict product yields, distributions, cooperate with other units and do sensitive studies were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. The simulated performance assumed that the expander operates under choked conditions and turbine inlet temperature equals to NG fired gas turbine. A “F” technology gas turbine was selected to generate power. Various cases were investigated so as to match FT synthesis island, power island and gasification island in co-production systems. Effects of CO2 removal/LPG recovery, co-firing, CH4 content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel and LPG was 136g-155g/NM3(CO+H2). At coal feed 21.9kg/s, net electricity exported to grid was higher than 100MW. Total production of diesel and gasoline (and LPG) was 118,000 tons(134,000tons)/Year. Under economic analysis conditions assumed in this paper, co-production system was economic feasible. The after tax profits can research 17 million EURO. Payback times were ranged from 6-7 years.


Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


Author(s):  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Colorless Distributed Combustion (also referred to as CDC) has been shown to provide ultra-low emissions and enhanced performance of high intensity gas turbine combustors. To achieve distributed combustion, the flowfield needs to be tailored for adequate mixing between reactants and hot reactive species from within the combustor to result in high temperature low oxygen concentration environment prior to ignition. Such reaction distribution results in uniform thermal field and also eliminates any hot spots for mitigating NOx emission. Though CDC have been extensively studied using a variety of geometries, heat release intensities, and fuels, the role of internally recirculated hot reactive gases needs to be further investigated and quantified. In this paper, the impact of internal entrainment of reactive gases on flame structure and behavior is investigated with focus on fostering distributed combustion and providing guidelines for designing future gas turbine combustors operating in distributed combustion mode. To simulate the recirculated gases from within the combustor, a mixture of nitrogen and carbon dioxide is introduced to the air stream prior to mixing with fuel and subsequent combustion. Increase in the amounts of nitrogen and carbon dioxide (simulating increased entrainment), led to volume distributed reaction over a larger volume in the combustor with enhanced and uniform distribution of the OH* chemiluminescence intensity. At the same time, the bluish flame stabilized by the swirler is replaced with a more uniform almost invisible bluish flame. The increased recirculation also reflected on the pollutants emission, where NO emissions were significantly decreased for the same amount of fuel burned. Lowering oxygen concentration from 21% to 15% (due to increased recirculation) resulted in 80∼90% reduction in NO with no impact on CO emission with sub PPM NO emission achieved at an equivalence ratio of 0.7. Flame stabilization at excess recirculation can be achieved using preheated nitrogen and carbon dioxide, achieving true distributed conditions with oxygen concentration below 13%.


Author(s):  
Antonio Andreini ◽  
Matteo Cerutti ◽  
Bruno Facchini ◽  
Luca Mangani

One of the driving requirements in gas turbine design is the combustion analysis. The reduction of exhaust pollutant emissions is in fact the main design constraint of modern gas turbine engines, requiring a detailed investigation of flame stabilization criteria and temperature distribution within combustion chamber. At the same time, the prediction of thermal loads on liner walls continues to represent a critical issue especially with diffusion flame combustors which are still widely used in aeroengines. To meet such requirement, design techniques have to take advantage also of the most recent CFD tools that have to supply advanced combustion models according to the specific application demand. Even if LES approach represents a very accurate approach for the analysis of reactive flows, RANS computation still represents a fundamental tool in industrial gas turbine development, thanks to its optimal tradeoff between accuracy and computational costs. This paper describes the development and the validation of both combustion and radiation models in a object-oriented RANS CFD code: several turbulent combustion models were considered, all based on a generalized presumed PDF flamelet approach, valid for premixed and non premixed flames. Concerning radiative heat transfer calculations, two directional models based on the P1-Approximation and the Finite Volume Method were treated. Accuracy and reliability of developed models have been proved by performing several computations on well known literature test-cases. Selected cases investigate several turbulent flame types and regimes allowing to prove code affordability in a wide range of possible gas turbine operating conditions.


Author(s):  
Alessandro Innocenti ◽  
Antonio Andreini ◽  
Andrea Giusti ◽  
Bruno Facchini ◽  
Matteo Cerutti ◽  
...  

In the present paper a numerical analysis of a low NOx partially premixed burner for industrial gas turbine applications is presented. The first part of the work is focused on the study of the premixing process inside the burner. Standard RANS CFD approach was used: k–ε turbulence model was modified and calibrated in order to find a configuration able to fit available experimental profiles of fuel/air concentration at the exit of the burner. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. An assessment of the turbulent combustion model was carried out with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. A reliable numerical setup was discovered by comparing predicted and measured NOx emissions at different operating conditions and at different split ratio between main and pilot fuel. In the investigated range, the influence of the premixer in the NOx formation rate was found to be marginal if compared with the pilot flame one. The calibrated numerical setup was then employed to explore possible modifications to fuel injection criteria and fuel split, with the aim of minimizing exhaust NOx emissions. This preliminary numerical screening of alternative fuel injection strategies allowed to define a set of advanced configurations to be investigated in future experimental tests.


Sign in / Sign up

Export Citation Format

Share Document