Wear behavior of tool flank in the side milling of Ti6Al4V: An analytical model and experimental validation

Author(s):  
Caixu Yue ◽  
Xiaochen Li ◽  
Xianli Liu ◽  
Jianbiao Du ◽  
Steven Y. Liang ◽  
...  

Due to the poor machinability of Ti6Al4V material, the cutting tool can easily suffer flank wear during the process of high-speed side milling, which reduces the tool life as well as the surface integrity of workpiece. Further, an effective method for predicting the flank wear of end mill during side milling of Ti6Al4V is lacking in the existing literature, which makes it difficult to improve the productivity of the overall process. To this end, in this study, a flank wear prediction model is constructed based on three main mechanisms: abrasive wear, adhesive wear, and diffusive wear. Subsequently, a normal stress model and temperature field model of wear land on the flank of end mill are established. Finally, these two models are incorporated in the flank wear model to obtain the variation rate of wear land width, which is regarded as a criterion to evaluate the reliability of the proposed flank wear prediction model of side mill. The prediction results are found to be in excellent agreement with the experimental results, which verifies the high prediction accuracy of the proposed model. Overall, this model can serve as a useful theoretical basis for the rational selection of tool geometry and cutting parameters.

1999 ◽  
Author(s):  
A. K. Balaji ◽  
I. S. Jawahir

Abstract This paper presents the results of an investigative study on the chip side-curling mechanism and the associated variable tool-chip contact in turning operations. The effect of various cutting and tool geometry parameters such as depth of cut-nose radius ratio, feed, inclination angle, etc. on chip side-curling are established in a hierarchical manner. The importance of variable friction at the tool-chip interface along the developed length of the cutting edge is shown from the experimental observations of the tool-chip contact area using a SEM analysis. The significant influence of the radial cutting force component on the resultant chip side-curl is established using a high speed-filming analysis of comparative experiments in tube and bar turning operations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sonja Jozić ◽  
Branimir Lela ◽  
Dražen Bajić

This paper presents a new approach improving the reliability of flank wear prediction during the end milling process. In the present work, prediction of flank wear has been achieved by using cutting parameters and force signals as the sensitive carriers of information about the machining process. A series of experiments were conducted to establish the relationship between flank wear and cutting force components as well as the cutting parameters such as cutting speed, feed per tooth, and radial depth of cut. In order to be able to predict flank wear a new linear regression mathematical model has been developed by utilizing functional data analysis methodology. Regression coefficients of the model are in the form of time dependent functions that have been determined through the use of functional data analysis methodology. The mathematical model has been developed by means of applied cutting parameters and measured cutting forces components during the end milling of workpiece made of 42CrMo4 steel. The efficiency and flexibility of the developed model have been verified by comparing it with the separate experimental data set.


2019 ◽  
Vol 3 (3) ◽  
pp. 59
Author(s):  
Benjamin Clauß ◽  
Andreas Nestler ◽  
Andreas Schubert ◽  
Dagmar Dietrich ◽  
Thomas Lampke

The application of aluminum matrix composites (AMCs) allows the reduction of moving loads for increased efficiency in modern technical systems. However, the presence of reinforcing particles leads to challenges in machining of AMCs, typically requiring diamond cutting materials. Single-edged MCD-tipped tools are used to investigate the influence of different clearance and rake angles on the resulting surface properties in milling, while the cutting parameters are kept constant. The specimens are manufactured from an aluminum wrought alloy comparable to EN AW-2017, reinforced with 10 vol.% of SiC particles. The surface properties are evaluated considering the surface structure, the residual stress state, and the microstructure of the surface layer. A clearance angle of the minor cutting edge of about 3° on average leads to the lowest Rz values and a reduced fluctuation of surface roughness values. Using a tool with a positive rake angle of 5° entails the highest absolute values of the compressive residual stresses and an increase compared to the initial state of up to about 290%. The results contribute to an understanding of the relations between tool geometry and the generated surface properties required for a targeted enhancement of the functional performance when machining AMCs.


2019 ◽  
Vol 825 ◽  
pp. 31-38
Author(s):  
Hisaaki Nakai ◽  
Takekazu Sawa ◽  
Masahiro Anzai

In order to improve efficiency of high speed milling, effects of pick feeds of up cutting and down cutting on tool wear and processing characteristics were investigated after cutting pre-hardened steel NAK 55 by TiAlN-coated carbide radius end mill. Flank wear of the tools after up cutting was less than down cutting when the pick feed was smaller than 0.1 mm, which tendency changed when the pick feed was larger than 0.3 mm.


2006 ◽  
Vol 315-316 ◽  
pp. 676-680 ◽  
Author(s):  
Asif Iqbal ◽  
Ning He ◽  
Liang Li ◽  
W.W. Zha ◽  
Y. Xia

Tool life, surface roughness, and cutting forces have always remained extremely important output parameters of milling process. In this paper an attempt has been presented in order to study the influence of cutter geometry and cutter coating upon these three output parameters. Series of high-speed side milling experiments were done upon hardened AISI 4340 and AISI D2 steels using coated and uncoated carbide cutters. Mechanisms of wear occurring in different tools have been described in the paper using SEM photographs and micro-analysis of the tool surface. The analysis of experimental data shows that the coated carbide cutters having high values of helix angle and small values of rake angle, in the negative range, provide the better optimization of highspeed milling of hardened steels. Results imply that tool geometry and coating are influential upon cutting forces and tool wear but not upon surface quality. Introduction of MQL in the process leads the tool to fail abruptly because of the onset of chipping.


2016 ◽  
Vol 836-837 ◽  
pp. 402-407
Author(s):  
Rui Tao Peng ◽  
Jing Li ◽  
Xin Zi Tang ◽  
Zhuan Zhou

In high speed machining superalloys processes, tool wear is strongly influenced by the cutting temperature and contact stresses. Finite element analysis of machining can be used as a supplementary to the physical experiment, this paper provides investigations in 2D and 3D finite element modeling and simulation of prestressed cutting for GH4169 superalloy, a tool wear model for the specified tool and workpiece pair is developed based on the Usui's wear model, furthermore, tool temperature, wear rate and nodal displacement on the face of tool in prestressed cutting of superalloy is analyzed under various prestress condition and cutting parameters, and Python language is adopted to modify the Abaqus code used to allow tool wear calculation and tool geometry updating. The results of the simulation indicate that the tool wear rate increases with the increase of cutting time, and the influence of the prestress to tool wear in prestressed cutting process of shaft part is unremarkable.


Author(s):  
Xueping Zhang ◽  
Rajiv Shivpuri ◽  
Anil K. Srivastava

Residual stresses generated from finish machining have a significant impact on the fatigue life of mechanical components by controlling crack initiation and propagation processes in their near subsurface. As governing variables, tool geometry, tool wear, machining parameter, work material property, and lubrication conditions have been widely studied to determine their effects on residual stress pattern in machined surface and subsurface. Among those parameters, tool flank wear was seldom fully investigated although tool flank wear, as well as machining speed, has been identified as the most important contributor to residual stress. Especially, tool flank wear becomes more significant due to the poor work thermal property during the high speed machining of titanium Ti-6Al-4V alloy. This study aims to investigate the combined role of tool flank wear and machining speed in developing residual stress in the machining of titanium alloy using finite element method. A microstructure sensitive material model based on Self Consistent Method (SCM) is adopted to incorporate the phase state and its transformations during machining cycle. Critical flank wear land and corresponding machining speeds are identified, beyond which compressive residual stresses are transferred into tensile residual stresses. High machining speeds demonstrate a distinct influence on residual stresses by means of promoting tool flank wear rate. The numerical simulation results are validated by empirical data provided in previous research.


2020 ◽  
Vol 44 (3) ◽  
pp. 395-404
Author(s):  
Morvarid Memarianpour ◽  
Seyed Ali Niknam ◽  
Sylvain Turenne ◽  
Marek Balazinski

Three distinctive regions of tool wear, known as initial wear, steady-state wear, and accelerated wear, are well understood. However, the effects of cutting parameters on the initial tool wear mechanism, morphology, and size have received less attention as compared to the other two regions. Knowing that adequate control of initial tool wear may lead to extended tool life, in particular in hard-to-cut metals such as superalloys, this topic has become a source of attention. Amongst superalloys, Inconel 718 is considered as one of the most difficult to cut materials, which has a wide range of industrial applications. This study intends to evaluate the effects of cutting parameters on initial tool wear, as well as tool wear progression, when turning Inconel 718. Therefore, microstructural evaluation of the initial tool wear mode under various cutting conditions, as well as tool wear measurements, were conducted. It was observed that certain elements of the workpieces were migrated to the insert flank face. This is evidence of adhesion at the initial moments of the cutting process. In contrast to many other easy-to-cut materials, the steady-state wear period when turning Inconel 718 is significantly short under a higher level of cutting speed and feed rate.


Sign in / Sign up

Export Citation Format

Share Document