Characterization of the rear wake of a SUV with extensions and without extensions

Author(s):  
Simone Sebben ◽  
Lennert Sterken ◽  
Thies Wölken

Passenger vehicles are considered to be bluff bodies, and therefore their total aerodynamic resistance is dominated by the pressure drag, which is basically the difference between the stagnation pressure at the front and the pressure at the base. In particular, the base wake of a vehicle has a significant influence on the total drag, and the ways to reduce and to control the drag have been the subject of numerous investigations. The present work focuses on the identification and analysis of unsteady-flow structures acting on the base wake of a sport utility vehicle with rear-end extensions and without rear-end extensions. Tapered extensions have proved to be an effective way to reduce the drag since they act as a truncated boat-tailing device which improves the pressure recovery zone and reduces the wake size. In this investigation, wind tunnel experiments and computational fluid dynamics were used to study the forces acting on the vehicle and the non-stationary behaviour of the rear wake flow. For analysis of the unsteady base pressures, a data-structure-sensitive filtering approach based on empirical mode decomposition in combination with fast Fourier transform and proper orthogonal decomposition was used. The numerical results and the experimental results complement each other well, and both revealed an antisymmetric mode in the transverse plane related to a flapping of the wake at a Strouhal number of around 0.23. Furthermore, a pumping effect, which is a main contributor to the drag, was observed at Strouhal values of between 0.04 and 0.07. This is in good agreement with the results from the research on more simplified model shapes. The rear extensions proved to be a productive way to reduce the drag coefficient and the magnitude of the wake flapping for the yaw angles investigated.

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 903
Author(s):  
Feng Wang ◽  
Xiaodong Zheng ◽  
Jianming Hao ◽  
Hua Bai

To more clearly understand the changes in flow characteristics around two square cylinders with different spacing ratios, the main mode of the flow field was extracted by using the Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) methods. The changes in the main mode of the flow field at different spacing ratios and the difference of the time series were analyzed and compared. This processing can separate the mixed information in the flow field and obtain the dominant modes in the flow field. These main modes can clearly reflect the dominant flow characteristics in the flow field. The analysis results show that when L/D = 2, the flow field structure is consistent with the flow field around a single square cylinder. When L/D = 2.5–3.5, the vortex shedding from upstream cylinders combines with the vortex near the downstream cylinders. This mutual coupling causes a significant change in the drag coefficient value of the downstream cylinder. When L/D = 4, the main vortex from the upstream cylinder can be completely shed, which means that the upstream and downstream square cylinder vortices start to become independent. The main focus of this paper is to use the advantages of POD and DMD to obtain several modes with higher energy in the flow field. Furthermore, it can be considered that these main modes can fully reflect the flow characteristics of the flow field.


Author(s):  
Fawzan Galib Abdul Karim Bawahab ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Abstrak. Pada penelitian ini, telah dilakukan analisa karakterisasi pada teknologi Direct Sequence Spread Spectrum dan Frequency Hopping Spread Spectrum, sebagai salah satu teknik multiple-access pada sistem komunikasi. Karakterisasi dilakukan untuk mencari bagaimana cara meningkatkan keoptimalan kedua sistem tersebut, dalam mengatasi masalah interferensi dengan sistem dan channel yang sama. Dan juga untuk menentukan veriabel apa yang mempengaruhi keoptimalan kedua sistem tersebut. Karakterisasi dilakukan dengan menentukan variabel-variabel yang mempengaruhi keoptimalan keduanya. Hasil dari karakterisasi, diketahui variabel-variabel yang mempengaruhi kemampuan sistem DSSS yaitu nilai frekuensi spreading (). Sedangkan untuk sistem FHSS yaitu nilai frekuensi spreading ( dan ) dan selisih antara frekuensi hopping data dengan frekuensi hopping interferensi . Kata Kunci: BER, DSSS, FHSS, Interference, Spread spectrum. Abstract. In this study, characterization of Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum technologies have been done, as one of the multiple-access techniques in communication systems. Characterization is done to find out how to improve the ability of the two systems, in solving interference problems with the same system and channel. And also to determine what veriabel affects the ability of the two systems. Characterization is done by determining the variables that affect the ability of both. The results of the characterization, known variables that affect the ability of the DSSS system are the spreading frequency value (). As for the FHSS system, the spreading frequency value ( and ) and the difference between frequency hopping data with frequency hopping interference .


1984 ◽  
Vol 49 (2) ◽  
pp. 410-420
Author(s):  
Eva Hillerová ◽  
Miroslav Zdražil

Reversible adsorption of heptane and benzene on model and industrial hydrodesulphurization molybdena catalysts has been studied by elution chromatographic method at 150 °C. An increase in the adsorption of heptane on sulphidation of adsorbents was small for Al2O3 and great for MoO3. Supported catalysts behaved as mixture of Al2O3 and MoO3.The portion of surface which can be transformed by sulphidation into MoS2 ranged from 0 to 65% for individual commercial catalysts, as determined from the change in heptane adsorption after sulphidation of a given sample. The polarity of catalysts, including their acidity, was estimated from the difference between adsorption of benzene and heptane. The polarity of model and industrial catalysts in oxidic form was similar to that of alumina in most cases. The decrease in the polarity after sulphidation of the adsorbents was small for Al2O3 and great for MoO3. The decrease in polarity resulting from sulphidation of supported catalysts was relatively small, since the reaction of MoO3 monolayer with hydrogen sulphide leads to partial reformation of the alumina surface. The acidity of supported sulphided hydrodesulphurization catalysts has been shown by this method to be comparable with the acidity of the support itself.


2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


2020 ◽  
Author(s):  
Christian Amor ◽  
José M Pérez ◽  
Philipp Schlatter ◽  
Ricardo Vinuesa ◽  
Soledad Le Clainche

Abstract This article introduces some soft computing methods generally used for data analysis and flow pattern detection in fluid dynamics. These techniques decompose the original flow field as an expansion of modes, which can be either orthogonal in time (variants of dynamic mode decomposition), or in space (variants of proper orthogonal decomposition) or in time and space (spectral proper orthogonal decomposition), or they can simply be selected using some sophisticated statistical techniques (empirical mode decomposition). The performance of these methods is tested in the turbulent wake of a wall-mounted square cylinder. This highly complex flow is suitable to show the ability of the aforementioned methods to reduce the degrees of freedom of the original data by only retaining the large scales in the flow. The main result is a reduced-order model of the original flow case, based on a low number of modes. A deep discussion is carried out about how to choose the most computationally efficient method to obtain suitable reduced-order models of the flow. The techniques introduced in this article are data-driven methods that could be applied to model any type of non-linear dynamical system, including numerical and experimental databases.


Morphology ◽  
2021 ◽  
Author(s):  
Rossella Varvara ◽  
Gabriella Lapesa ◽  
Sebastian Padó

AbstractWe present the results of a large-scale corpus-based comparison of two German event nominalization patterns: deverbal nouns in -ung (e.g., die Evaluierung, ‘the evaluation’) and nominal infinitives (e.g., das Evaluieren, ‘the evaluating’). Among the many available event nominalization patterns for German, we selected these two because they are both highly productive and challenging from the semantic point of view. Both patterns are known to keep a tight relation with the event denoted by the base verb, but with different nuances. Our study targets a better understanding of the differences in their semantic import.The key notion of our comparison is that of semantic transparency, and we propose a usage-based characterization of the relationship between derived nominals and their bases. Using methods from distributional semantics, we bring to bear two concrete measures of transparency which highlight different nuances: the first one, cosine, detects nominalizations which are semantically similar to their bases; the second one, distributional inclusion, detects nominalizations which are used in a subset of the contexts of the base verb. We find that only the inclusion measure helps in characterizing the difference between the two types of nominalizations, in relation with the traditionally considered variable of relative frequency (Hay, 2001). Finally, the distributional analysis allows us to frame our comparison in the broader coordinates of the inflection vs. derivation cline.


2021 ◽  
Vol 11 (13) ◽  
pp. 5924
Author(s):  
Elisa Levi ◽  
Simona Sgarbi ◽  
Edoardo Alessio Piana

From a circular economy perspective, the acoustic characterization of steelwork by-products is a topic worth investigating, especially because little or no literature can be found on this subject. The possibility to reuse and add value to a large amount of this kind of waste material can lead to significant economic and environmental benefits. Once properly analyzed and optimized, these by-products can become a valuable alternative to conventional materials for noise control applications. The main acoustic properties of these materials can be investigated by means of a four-microphone impedance tube. Through an inverse technique, it is then possible to derive some non-acoustic properties of interest, useful to physically characterize the structure of the materials. The inverse method adopted in this paper is founded on the Johnson–Champoux–Allard model and uses a standard minimization procedure based on the difference between the sound absorption coefficients obtained experimentally and predicted by the Johnson–Champoux–Allard model. The results obtained are consistent with other literature data for similar materials. The knowledge of the physical parameters retrieved applying this technique (porosity, airflow resistivity, tortuosity, viscous and thermal characteristic length) is fundamental for the acoustic optimization of the porous materials in the case of future applications.


2021 ◽  
Vol 8 (3) ◽  
pp. 41
Author(s):  
Fardin Khalili ◽  
Peshala T. Gamage ◽  
Amirtahà Taebi ◽  
Mark E. Johnson ◽  
Randal B. Roberts ◽  
...  

Treatments of atherosclerosis depend on the severity of the disease at the diagnosis time. Non-invasive diagnosis techniques, capable of detecting stenosis at early stages, are essential to reduce associated costs and mortality rates. We used computational fluid dynamics and acoustics analysis to extensively investigate the sound sources arising from high-turbulent fluctuating flow through stenosis. The frequency spectral analysis and proper orthogonal decomposition unveiled the frequency contents of the fluctuations for different severities and decomposed the flow into several frequency bandwidths. Results showed that high-intensity turbulent pressure fluctuations appeared inside the stenosis for severities above 70%, concentrated at plaque surface, and immediately in the post-stenotic region. Analysis of these fluctuations with the progression of the stenosis indicated that (a) there was a distinct break frequency for each severity level, ranging from 40 to 230 Hz, (b) acoustic spatial-frequency maps demonstrated the variation of the frequency content with respect to the distance from the stenosis, and (c) high-energy, high-frequency fluctuations existed inside the stenosis only for severe cases. This information can be essential for predicting the severity level of progressive stenosis, comprehending the nature of the sound sources, and determining the location of the stenosis with respect to the point of measurements.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 363-372 ◽  
Author(s):  
Y. Elerman ◽  
H. Kara ◽  
A. Elmali

The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm−1 for 1 and 440 cm−1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hückel Molecular Orbital (EHMO) calculations are also reported.


Sign in / Sign up

Export Citation Format

Share Document