scholarly journals Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions: Theoretical and numerical study

Author(s):  
J.C. Umavathi ◽  
O. Anwar Bég

Motivated by developments in thermal duct processing, an investigation is presented to study the behavior of viscous nanoparticle suspensions flowing in a vertical duct subject to Fourier-type conditions. The left wall temperature is kept lower than that of the right wall. Brownian motion and thermophoresis which are invoked via the presence of nanoparticles are incorporated in the study. Numerical solutions with an efficient Runge–Kutta shooting method are also presented at all values of the control parameters. The impact of thermal Grashof number [Formula: see text], Eckert number [Formula: see text], thermophoresis [Formula: see text], and Brownian motion parameters [Formula: see text] on the velocity, temperature, and nanoparticle concentration distributions for identical [Formula: see text] and differing Biot numbers [Formula: see text] (at the duct walls) are computed and visualized graphically. With vanishing thermophoresis and Brownian motion parameters, the solutions match exactly with the earlier Newtonian viscous flow computations. Symmetric and asymmetric wall heat conditions are also acknowledged. Intensifying the thermal Grashof number, Eckert number, thermophoresis parameter, and Brownian parameter serve to amplify magnitudes of the velocity and temperature, whereas the nanoparticle concentration field is suppressed. The skin friction and Sherwood number are also computed with various combinations of the flow control parameters. Nusselt number values at the hot duct wall are enhanced with an increase in thermal buoyancy parameter, Eckert number, Brownian motion parameter, and thermophoresis parameter for equal Biot numbers. The opposite trend is computed for different Biot numbers. For any given values of Biot numbers, the mean velocity and bulk temperature are boosted with increase in thermal buoyancy parameter, Eckert number, Brownian motion parameter, and thermophoresis parameter. Hence, it may be inferred that the transport characteristics computed using Fourier-type boundary conditions are substantially different from those based on isothermal boundary conditions in nanofluid duct flows.

Author(s):  
JC Umavathi ◽  
Sapnali Limbaraj Patil ◽  
B Mahanthesh ◽  
O Anwar Bég

The aim of the present work is to examine the impact of magnetized nanoparticles (NPs) in enhancement of heat transport in a tribological system subjected to convective type heating (Robin) boundary conditions. The regime examined comprises the squeezing transition of a magnetic (smart) Newtonian nano-lubricant between two analogous disks under an axial magnetism. The lower disk is permeable whereas the upper disk is solid. The mechanisms of haphazard motion of NPs and thermophoresis are simulated. The non-dimensional problem is solved numerically using a finite difference method in the MATLAB bvp4c solver based on Lobotto quadrature, to scrutinize the significance of thermophoresis parameter, squeezing number, Hartmann number, Prandtl number, and Brownian motion parameter on velocity, temperature, nanoparticle concentration, Nusselt number, factor of friction, and Sherwood number distributions. The obtained results for the friction factor are validated against previously published results. It is found that friction factor at the disk increases with intensity in applied magnetic field. The haphazard (Brownian) motion of nanoparticles causes an enhancement in thermal field. Suction and injection are found to induce different effects on transport characteristics depending on the specification of equal or unequal Biot numbers at the disks. The main quantitative outcome is that, unequal Biot numbers produce significant cooling of the regime for both cases of disk suction or injection, indicating that Robin boundary conditions yield substantial deviation from conventional thermal boundary conditions. Higher thermophoretic parameter also elevates temperatures in the regime. The nanoparticles concentration at the disk is boosted with higher values of Brownian motion parameter. The response of temperature is similar in both suction and injection cases; however, this tendency is quite opposite for nanoparticle concentrations. In the core zone, the resistive magnetic body force dominates and this manifests in a significant reduction in velocity, that is damping. The heat build-up in squeeze films (which can lead to corrosion and degradation of surfaces) can be successfully removed with magnetic nanoparticles leading to prolonged serviceability of lubrication systems and the need for less maintenance.


Author(s):  
Vasu B. ◽  
Atul Kumar Ray

PurposeTo achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.Design/methodology/approachThe governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.FindingsThe effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.Originality/valueThe present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.


2019 ◽  
Vol 8 (1) ◽  
pp. 744-754 ◽  
Author(s):  
Sumit Gupta ◽  
Sandeep Gupta

Abstract Current article is devoted with the study of MHD 3D flow of Oldroyd B type nanofluid induced by bi-directional stretching sheet. Expertise similarity transformation is confined to reduce the governing partial differential equations into ordinary nonlinear differential equations. These dimensionless equations are then solved by the Differential Transform Method combined with the Padé approximation (DTM-Padé). Dealings of the arising physical parameters namely the Deborah numbers β1 and β2, Prandtl number Pr, Brownian motion parameter Nb and thermophoresis parameter Nt on the fluid velocity, temperature and concentration profile are depicted through graphs. Also a comparative study between DTM and numerical method are presented by graph and other semi-analytical techniques through tables. It is envisage that the velocity profile declines with rising magnetic factor, temperature profile increases with magnetic parameter, Deborah number of first kind and Brownian motion parameter while decreases with Deborah number of second kind and Prandtl number. A comparative study also visualizes comparative study in details.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 986 ◽  
Author(s):  
Noreen ◽  
Waheed ◽  
Hussanan ◽  
Lu

A theoretical study is presented to examine entropy generation in double-diffusive convection in an Electro-osmotic flow (EOF) of nanofluids via a peristaltic microchannel. Buoyancy effects due to change in temperature, solute concentration and nanoparticle volume fraction are also considered. This study was performed under lubrication and Debye-Hückel linearization approximation. The governing equations are solved exactly. The effect of dominant hydrodynamic parameters (thermophoresis, Brownian motion, Soret and Dufour), Grashof numbers (thermal, concentration and nanoparticle) and electro-osmotic parameters on double-diffusive convective flow are discussed. Moreover, trapping, pumping, entropy generation number, Bejan number and heat transfer rate were also examined under the influence of pertinent parameters such as the thermophoresis parameter, the Brownian motion parameter, the Soret parameter, the Dufour parameter, the thermal Grashof number, the solutal Grashof number, the nanoparticle Grashof number, the electro-osmotic parameter and Helmholtz–Smoluchowski velocity. The electro-osmotic parameter powerfully affected the velocity profile. The magnitude of total entropy generation increased as the thermophoresis parameter and Brownian motion parameter increased. Soret and the Dufour parameter had a strong tendency to control the temperature profile and Bejan number. The findings of the present analysis can be used in clinical purposes such as cell therapy, drug delivery systems, pharmaco-dynamic pumps and particles filtration.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850007 ◽  
Author(s):  
O. ANWAR BÉG ◽  
AYESHA SOHAIL ◽  
ALI KADIR ◽  
T. A. BÉG

A mathematical model is presented for magnetized nanofluid bio-tribological squeeze-film flow between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with an electrically-conducting base fluid, making the nanosuspension responsive to applied magnetic field. The governing viscous momentum, heat and species (nanoparticle) conservation equations are normalized with appropriate transformations which renders the original coupled, non-linear partial differential equation system into a more amenable ordinary differential boundary value problem. The emerging model is shown to be controlled by a number of parameters, viz nanoparticle volume fraction, squeeze number, Hartmann magnetic body force number, disk surface transpiration parameter, Brownian motion parameter, thermophoretic parameter, Prandtl number and Lewis number. Computations are conducted with a B-spline collocation numerical method. Validation with previous homotopy solutions is included. The numerical spline algorithm is shown to achieve excellent convergence and stability in non-linear bio-tribological boundary value problems. The interaction of heat and mass transfer with nanofluid velocity characteristics is explored. In particular, smaller nanoparticle (high Brownian motion parameter) suspensions are studied. The study is relevant to enhanced lubrication performance in novel bio-sensors and intelligent knee joint (orthopaedic) systems.


2014 ◽  
Vol 30 (4) ◽  
pp. 411-422 ◽  
Author(s):  
E. H. Aly ◽  
A. Ebaid

AbstractThe peristaltic flow of nanofluids under the effect of slip conditions was theoretically investigated. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. Then, the exact solutions were successfully obtained and reported for the first time in the present work. These exact solutions were then used for studying the effects of the slip, thermophoresis, Brownian motion parameters and many others on the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and pressure gradient. In addition, it is proved that the obtained exact solutions are reduced to the literature results in the special cases.In the general case, it was found that on comparing the current solutions with the approximate ones obtained using the homotopy perturbation method in literature, remarkable differences have been detected for behaviour of the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and finally the pressure gradient. An example of these differences is about effect of the Brownian motion parameter on the velocity profile; where it was shown in this paper that the small values of this parameter have not a significant effect on the velocity, while this situation was completely different in the published work. Many other significant differences have been also discussed. Therefore, these observed differences recommend the necessity of including the convergence issue when applying the homotopy perturbation method or any other series solution method to solve a physical model. In conclusion. The current results may be considered as a base for any future analysis and/or comparisons.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Syahira Mansur ◽  
Anuar Ishak

The boundary layer flow of a nanofluid past a stretching/shrinking sheet with a convective boundary condition is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the local Nusselt number and the local Sherwood number as well as the temperature and concentration profiles for some values of the convective parameter, stretching/shrinking parameter, Brownian motion parameter, and thermophoresis parameter. The results indicate that the local Nusselt number is consistently higher for higher values of the convective parameter. However, the local Nusselt number decreases with increasing values of the Brownian motion parameter as well as the thermophoresis parameter. In addition, the local Sherwood number increases with increasing Brownian motion parameter and decreases with increasing convective parameter and thermophoresis parameter.


2017 ◽  
Vol 27 (6) ◽  
pp. 1215-1230 ◽  
Author(s):  
Noreen Sher Akbar ◽  
O. Anwar Beg ◽  
Z.H. Khan

Purpose Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials’ manufacturing. The efficient production of such materials combines many physical phenomena including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To improve the understanding of complex inter-disciplinary transport phenomena in such systems, mathematical models provide a robust approach. Motivated by this, this study aims to develop a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. Design/methodology/approach This study developed a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. A uniform constant-strength magnetic field is applied transversely to the stretching flow plane. The Buongiorno nanofluid model is used to represent thermophoretic and Brownian motion effects. A non-Fourier (Cattaneo–Christov) model is used to simulate thermal conduction effects, of which the Fourier model is a special case when thermal relaxation effects are neglected. Findings The governing conservation equations are rendered dimensionless with suitable scaling transformations. The emerging nonlinear boundary value problem is solved with a fourth-order Runge–Kutta algorithm and also shooting quadrature. Validation is achieved with earlier non-magnetic and forced convection flow studies. The influence of key thermophysical parameters, e.g. Hartmann magnetic number, thermal Grashof number, thermal relaxation time parameter, Schmidt number, thermophoresis parameter, Prandtl number and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood number and nanoparticle concentration distributions, is investigated. Originality/value A strong elevation in temperature accompanies an increase in Brownian motion parameter, whereas increasing magnetic parameter is found to reduce heat transfer rate at the wall (Nusselt number). Nanoparticle volume fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt number and thermophoresis parameter, whereas it is elevated significantly with greater Brownian motion parameter. Higher temperatures are achieved with greater thermal relaxation time values, i.e. the non-Fourier model predicts greater values for temperature than the classical Fourier model.


2018 ◽  
Vol 23 (3) ◽  
pp. 787-801
Author(s):  
B. Zigta

Abstract This study examines the effect of thermal radiation, chemical reaction and viscous dissipation on a magnetohydro- dynamic flow in between a pair of infinite vertical Couette channel walls. The momentum equation accounts the effects of both the thermal and the concentration buoyancy forces of the flow. The energy equation addresses the effects of the thermal radiation and viscous dissipation of the flow. Also, the concentration equation includes the effects of molecular diffusivity and chemical reaction parameters. The gray colored fluid considered in this study is a non-scattering medium and has the property of absorbing and emitting radiation. The Roseland approximation is used to describe the radiative heat flux in the energy equation. The velocity of flow transforms kinetic energy into heat energy. The increment of the velocity due to internal energy results in heating up of the fluid and consequently it causes increment of the thermal buoyancy force. The Eckert number being the ratio of the kinetic energy of the flow to the temperature difference of the channel walls is directly proportional to the thermal energy dissipation. It can be observed that increasing the Eckert number results in increasing velocity. A uniform magnetic field is applied perpendicular to the channel walls. The temperature of the moving wall is high enough due to the presence of thermal radiation. The solution of the governing equations is obtained using regular perturbation techniques. These techniques help to convert partial differential equations to a set of ordinary differential equations in dimensionless form and thus they are solved analytically. The following results are obtained: from the simulation study it is observed that the flow pattern of the fluid is affected due to the influence of the thermal radiation, the chemical reaction and viscous dissipation. The increment in the Hartmann number results in the increment of the Lorentz force but a decrement in velocity of the flow. An increment in the radiative parameter results in a decrement in temperature. An increment in the Prandtl number results in a decrement in thermal diffusivity. An increment in both the chemical reaction parameter and molecular diffusivity results in a decrement in concentration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249264
Author(s):  
Arshad Khan ◽  
Wiyada Kumam ◽  
Imran Khan ◽  
Anwar Saeed ◽  
Taza Gul ◽  
...  

This work addresses the ability to manage the distribution of heat transmission for fluid flow occurs upon a paraboloid thin shaped hot needle by using hybrid nanoparticles containing Copper Oxide (CuO) and Silver (Ag) with water as pure fluid. The needle is placed horizontally in nanofluid with an application of Hall current and viscous dissipation. The popular Buongiorno model has employed in the current investigation in order to explore the impact of Brownian and thermophoretic forces exerted by the fluid. The modeled equations with boundary conditions are transformed to non-dimensional form by incorporating a suitable group of similarity variables. This set of ordinary differential equations is then solved by employing homotopy analysis method (HAM). After detail study of the current work, it has established that the flow of fluid reduces with growth in magnetic effects and volume fractions of nanoparticles. Thermal characteristics increase with augmentation of Eckert number, magnetic field, volume fractions of nanoparticles, Brownian motion parameter and decline with increase in Prandtl number. Moreover, concentration of nanoparticles reduces with corresponding growth in Lewis number and thermophoresis, chemical reaction parameters while increases with growth in Brownian motion parameter.


Sign in / Sign up

Export Citation Format

Share Document