Energy efficient throttling control of a multi-pressure system using a genetic algorithm and model predictive control

Author(s):  
Mikko Huova ◽  
Matti Linjama

The energy efficiency of hydraulic cylinder drives can be increased by replacing the actuator with a multi-chamber cylinder, utilising multiple supply lines with unique pressures or a combination of the concepts. Previous studies have demonstrated significant energy savings using a cascaded control system, which requires velocity feedback to stabilise the system. To avoid the need of position or velocity sensors in harsh conditions of mobile machines, this article presents a throttling control scheme, which achieves good energy efficiency on multi-pressure systems without velocity feedback. A simulation study was performed to determine the efficiency of the system, robustness against load variations and the effect of valve response time on performance.

Actuators ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 78 ◽  
Author(s):  
Daniel Hagen ◽  
Damiano Padovani ◽  
Martin Choux

This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems’ energy efficiency. It is experimentally shown that the self-contained solution enables 62% energy savings in a representative working cycle due to its throttleless and power-on-demand nature. In the self-contained drive, up to 77% of the energy taken from the power supply can be used effectively if the recovered energy is reused, an option that is not possible in the state of the art hydraulic architecture. In fact, more than 20% of the consumed energy may be recovered in the self-contained system during the proposed working cycle. In summary, the novel self-contained option is experimentally proven to be a valid alternative to conventional hydraulics for applications where passive load-holding is required both in terms of dynamic response and energy consumption. Introducing such self-sufficient and completely sealed devices also reduces the risk of oil spill pollution, helping fluid power to become a cleaner technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
M. Al-Dhaifallah ◽  
N. Kanagaraj ◽  
K. S. Nisar

This article presents a fuzzy fractional-order PID (FFOPID) controller scheme for a pneumatic pressure regulating system. The industrial pneumatic pressure systems are having strong dynamic and nonlinearity characteristics; further, these systems come across frequent load variations and external disturbances. Hence, for the smooth and trouble-free operation of the industrial pressure system, an effective control mechanism could be adopted. The objective of this work is to design an intelligent fuzzy-based fractional-order PID control scheme to ensure a robust performance with respect to load variation and external disturbances. A novel model of a pilot pressure regulating system is developed to validate the effectiveness of the proposed control scheme. Simulation studies are carried out in a delayed nonlinear pressure regulating system under different operating conditions using fractional-order PID (FOPID) controller with fuzzy online gain tuning mechanism. The results demonstrate the usefulness of the proposed strategy and confirm the performance improvement for the pneumatic pressure system. To highlight the advantages of the proposed scheme a comparative study with conventional PID and FOPID control schemes is made.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 125
Author(s):  
Milan Šešlija ◽  
Vule Reljić ◽  
Dragan Šešlija ◽  
Slobodan Dudić ◽  
Nikolina Dakić ◽  
...  

In order to improve the energy efficiency of multi-actuator pneumatic systems, a control scheme for the recovery of exhausted compressed air is designed and studied herein. This paper explains the procedure for the development of the balanced operation of a multi-actuator pneumatic system through the collection and reuse of exhausted compressed air. Compared with traditional motion control of pneumatic actuators, significant energy savings can be achieved, while the dynamic behavior of the cylinders from which the exhausted air is collected is maintained.


2013 ◽  
Vol 475-476 ◽  
pp. 875-881
Author(s):  
Long Wang ◽  
Xue Qiang Zheng ◽  
Fei Song ◽  
Juan Chen

Femtocell is one of the promising solutions that can improve the energy efficiency of cellular network. However, densely and randomly deployed femtocells may experience server inter-femtocell interference due to rough-and-tumble spectrum reuse with unconstrained power. In this paper, the downlink power control problem is investigated to achieve an energy efficient power allocation scheme. The problem is formulated as a non-cooperative game and distributed power control algorithm is proposed. Numerical results suggest that a good energy efficiency improvement is acquired and the algorithm converge within a few iteration times.


2012 ◽  
Vol 9 (8) ◽  
pp. 829-840 ◽  
Author(s):  
R. Saidur ◽  
M. T. Sambandam ◽  
M. Hasanuzzaman ◽  
D. Devaraj ◽  
S. Rajakarunakaran

2020 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Fernando Martín-Consuegra ◽  
Fernando de Frutos ◽  
Ignacio Oteiza ◽  
Carmen Alonso ◽  
Borja Frutos

This study quantified the improvement in energy efficiency following passive renovation of the thermal envelope in highly inefficient residential complexes on the outskirts of the city of Madrid. A case study was conducted of a single-family terrace housing, representative of the smallest size subsidized dwellings built in Spain for workers in the nineteen fifties and sixties. Two units of similar characteristics, one in its original state and the other renovated, were analyzed in detail against their urban setting with an experimental method proposed hereunder for simplified, minimal monitoring. The dwellings were compared on the grounds of indoor environment quality parameters recorded over a period covering both winter and summer months. That information was supplemented with an analysis of the energy consumption metered. The result was a low-cost, reasonably accurate measure of the improvements gained in the renovated unit. The monitoring output data were entered in a theoretical energy efficiency model for the entire neighborhood to obtain an estimate of the potential for energy savings if the entire urban complex were renovated.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


Author(s):  
Niko Karlén ◽  
Tatiana Minav ◽  
Matti Pietola

Several types of off-road machinery, such as industrial trucks, forklifts, excavators, mobile cranes, and wheel loaders, are set to be operated in environments which can differ considerably from each other. This sets certain limits for both the drive transmissions and working hydraulics of these machines. The ambient temperature must be taken into account when selecting the hydraulic fluid since the viscosity and density of the fluid are changing at different operating temperatures. In addition to the temperature, energy efficiency can also be a problem in off-road machinery. In most off-road machines, diesel engines are employed to produce mechanical energy. However, there are energy losses during the working process, which causes inefficiency in produced energy. For better energy efficiency, hybridization in off-road machinery is an effective method to decrease fuel consumption and increase energy savings. One of the possible methods to save energy with hybrids is energy regeneration. However, it means that the basic hydraulic system inside off-road machinery needs to be modified. One solution for this is to utilize zonal or decentralized approach by means of direct driven hydraulic (DDH) system. This paper aims to investigate a DDH system for off-road machinery by means of modelling and analyzing the effect of the temperature. In the direct-driven hydraulic system, the actuator is controlled directly by the hydraulic pump which is operated by the electric motor. Specifically, it is a valveless closed-loop hydraulic system. Thus, there will be no energy losses caused by the valves, and the total efficiency is assumed to be significantly higher. In order to examine the DDH system, a thermo-hydraulic model was created. Additionally, a thermal camera was utilized in order to illustrate the temperature changes in the components of the DDH system. To reproduce the action of the system in different circumstances DDH system was run at different ambient temperatures, and the component temperatures in the system were measured and saved for the analysis. The thermo hydraulic model was proven capable to follow the general trend of heating up.


Energy Policy ◽  
1994 ◽  
Vol 22 (12) ◽  
pp. 992 ◽  
Author(s):  
Leonard G. Brookes

Sign in / Sign up

Export Citation Format

Share Document