scholarly journals miR-19 Promotes Cell Proliferation, Invasion, Migration, and EMT by Inhibiting SPRED2-mediated Autophagy in Osteosarcoma Cells

2020 ◽  
Vol 29 ◽  
pp. 096368972096246
Author(s):  
Chuhai Xie ◽  
Shengyao Liu ◽  
Boyi Wu ◽  
Yu Zhao ◽  
Binwei Chen ◽  
...  

Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial–mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.

PPAR Research ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Seung-Won Park ◽  
Chunghee Cho ◽  
Byung-Nam Cho ◽  
Youngchul Kim ◽  
Tae Won Goo ◽  
...  

15-Deoxy-Δ12,14-prostaglandin J2(15d-PGJ2) and activin are implicated in the control of apoptosis, cell proliferation, and inflammation in cells. We examined both the mechanism by which 15d-PGJ2regulates the transcription of activin-induced activin receptors (ActR) and Smads in HepG2 cells and the involvement of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in this regulation. Activin A (25 ng/mL) inhibited HepG2 cell proliferation, whereas 15d-PGJ2(2 μM and 5 μM) had no effect. Activin A and 15d-PGJ2showed different regulatory effects on ActR and Smad expression, NF-κB p65 activity and MEK/ERK phosphorylation, whereas they both decreased IL-6 production and increased IL-8 production. When co-stimulated with 15d-PGJ2and activin, 15d-PGJ2inhibited the activin-induced increases in ActR and Smad expression, and decreased activin-induced IL-6 production. However, it increased activin-induced IL-8 production. In addition, 15d-PGJ2inhibited activin-induced NF-κB p65 activity and activin-induced MEK/ERK phosphorylation. These results suggest that 15d-PGJ2suppresses activin-induced ActR and Smad expression, down-regulates IL-6 production, and up-regulates IL-8 production via suppression of NF-κB and MAPK signaling pathway in HepG2 cells. Regulation of ActR and Smad transcript expression and cytokine production involves NF-κB and the MAPK pathway via interaction with 15d-PGJ2/activin/Smad signaling.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Qiang He ◽  
Hui Li ◽  
Fanzhi Meng ◽  
Xiangjun Sun ◽  
Xu Feng ◽  
...  

Methionine sulfoxide reductase B1 (MsrB1) is a member of the selenoprotein family, which contributes to the reduction of methionine sulfoxides produced from reactive oxygen species (ROS) by redox processes in energy pathways. However, few studies have examined the role of MsrB1 in human hepatocellular carcinoma (HCC). We observed that MsrB1 is highly expressed in HCC tissues and that its expression correlated with the prognoses of patients with HCC after hepatectomy. In vitro, knockdown of MsrB1 inhibits HCC cell growth by MTT and EdU proliferation assay, and MsrB1 interference enhances H2O2/trx-induced apoptosis. We observed that phosphorylation of the key proteins of the MAPK pathway, namely, ERK, MEK, and p53, was inhibited, but PARP and caspase 3 were increased, thus infecting mitochondrial integrity. In vivo, MsrB1 knockdown effectively inhibited tumor growth. Furthermore, MsrB1 knockdown reduced HCC cell migration and invasion in a transwell assay through inhibition of cytoskeletal rearrangement and spread. This change was linked to epithelial-mesenchymal transition (EMT) inhibition resulting from increases in E-cadherin expression and decreases in expression in TGF-β1, Slug, MMP-2/9, and so on. MsrB1 regulates HCC cell proliferation and migration by modulating the MAPK pathway and EMT. Thus, MsrB1 may be a novel therapeutic target with respect to the treatment of HCC.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Tingting Jia ◽  
Yipeng Ren ◽  
Fengze Wang ◽  
Rui Zhao ◽  
Bo Qiao ◽  
...  

Abstract Objective: The current study aimed to investigate the functional roles and clinical significance of microRNA-148a (miR-148a) in the progression of oral squamous cell carcinoma (OSCC). Methods: Relative expression of miR-148a in OSCC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Chi-square test was performed to estimate the relationship between miR-148a expression and clinical characteristics of OSCC patients. Cell transfection was carried out using Lipofectamine® 2000. Biological behaviors of tumor cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and transwell assays. Bioinformatics analysis and luciferase reporter assay were used to identify the target genes of miR-148a. Protein expression was detected through Western blot analysis. Results: MiR-148a expression was obviously decreased in OSCC tissues and cells, and such down-regulation was closely correlated with lymph node metastasis (P=0.027) and tumor node metastasis (TNM) stage (P=0.001) of OSCC patients. miR-148a overexpression could significantly impair OSCC cell proliferation, migration and invasion in vitro (P<0.05 for all). Insulin-like growth factor-I receptor (IGF-IR) was a potential target of miR-148a. MiR-148a could inhibit ERK/MAPK signaling pathway through targeting IGF-IR. Conclusion: MiR-148a plays an anti-tumor role in OSCC and inhibits OSCC progression through suppressing ERK/MAPK pathway via targeting IGF-IR.


2022 ◽  
Vol 12 (4) ◽  
pp. 848-853
Author(s):  
Peng Sun ◽  
Duojiao Fan ◽  
Jing Cao ◽  
Haiyan Zhou ◽  
Fan Yang ◽  
...  

Abnormal MEK1 expression is associated with tumor cell EMT, invasion and metastasis. Decreased miR-16 level is associated with glioma. Bioinformatics analysis showed a relationship between miR-16 and MEK1. This study assessed whether miR-16 regulates MEK1 expression and affects glioma cell EMT and invasion. The tumor tissues and adjacent glioma tissues were collected to measure miR-16 and MEK1 mRNA. The dual luciferase assay validated the relation of miR-16 with MEK1. U251 cells were cultured and assigned into NC group and mimic group, followed by analysis of cell biological behaviors, and MEK1, p-ERK1/2, E-cadherin, N-Cadherin expression. Compared with adjacent tissues, miR-16 expression was significantly decreased and MEK1 was elevated in glioma tissues. Compared with HEB, miR-16 in glioma U251 and SHG44 cells was decreased and MEK1 was increased. Dual luciferase reporter gene experiments confirmed the relation of miR-16 with MEK1. Transfection of miR-16 mimic significantly down-regulated MEK1, p-ERK1/2 and N-cadherin in U251 cells, upregulated E-cadherin, inhibited cell proliferation, promoted apoptosis, and attenuated EMT and invasion of glioma cells. In conclusion, decreased miR-16 expression and increased MEK1 expression is related to glioma pathogenesis. Overexpression of miR-16 can inhibit MEK1 expression, ERK/MAPK signaling, glioma cell proliferation, promote apoptosis, and attenuate EMT and invasion.


2018 ◽  
pp. 1-18 ◽  
Author(s):  
Matthew J. Wongchenko ◽  
Antoni Ribas ◽  
Paolo A. Ascierto ◽  
Brigitte Dréno ◽  
Anna Maria di Giacomo ◽  
...  

Purpose The treatment of advanced BRAFV600-mutated melanomas with BRAF inhibitors (BRAFi) has improved survival, but the efficacy of BRAFi varies among individuals and the development of acquired resistance to BRAFi through reactivation of mitogen-activated protein kinase (MAPK) signaling is common. We performed an exploratory, retrospective analysis to investigate the effects of BRAFV600 allelic balance, coexisting oncogene mutations, cell proliferation signaling levels, and loss of PTEN expression on progression-free survival (PFS) in patients in the phase III coBRIM study, which compared the combination of the MEK inhibitor cobimetinib with the BRAFi vemurafenib versus vemurafenib as monotherapy. Methods Baseline tumor samples from the intention-to-treat population were analyzed by targeted deep sequencing at a median coverage of 3,600× and by immunohistochemistry for cell proliferation markers, BRAFV600E, and PTEN. The association of these biomarkers with PFS was assessed by Cox proportional hazards modeling. Gene expression in relation to loss of PTEN was profiled by RNA sequencing in 205 patient samples and 42 BRAFV600-mutated melanoma cell lines. Results Neither BRAFV600 allelic balance nor coexisting mutations in the RAS/RAF/RTK pathway affected PFS in either treatment group. Increased baseline MAPK signaling and cell proliferation did not affect PFS in patients treated with cobimetinib combined with vemurafenib. PTEN loss was associated with reduced PFS in patients treated with vemurafenib alone but not in patients treated with cobimetinib combined with vemurafenib. Conclusion Deeper inhibition of the MAPK pathway through targeting of both MEK and BRAF may override the effects of tumor heterogeneity and improve PFS in all patients with advanced BRAFV600 melanoma.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Tingzhuang Yi ◽  
Hongcheng Luo ◽  
Fengxue Qin ◽  
Qi Jiang ◽  
Shougao He ◽  
...  

Abstract Involvement of long non-coding RNAs (lncRNAs) in hepatocarcinogenesis has been largely documented. Mitochondrial dynamics is identified to impact survival and metastasis in tumors including hepatocellular carcinoma (HCC), but the underlying mechanism remains poorly understood. This study planned to explore the regulation of lncRNA LL22NC03-N14H11.1 on HCC progression and mitochondrial fission. Dysregulated lncRNAs in HCC are identified through circlncRNAnet and GEPIA bioinformatics tools. Biological function of LL22NC03-N14H11.1 in HCC was detected by CCK-8 assay, flow cytometry analysis, transwell invasion, and wound healing assays. Molecular interactions were determined by RNA immunoprecipitation, RNA pull-down, and co-immunoprecipitation assays. Results showed that LL22NC03-N14H11.1 was upregulated in HCC tissues and cells. Functionally, LL22NC03-N14H11.1 contributed to cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in HCC. Moreover, LL22NC03-N14H11.1 facilitated mitochondrial fission in HCC cells. Mechanistically, LL22NC03-N14H11.1 recruited Myb proto-oncogene (c-Myb) to repress the transcription of leucine zipper-like transcription regulator 1 (LZTR1), so as to inhibit LZTR1-mediated ubiquitination of H-RAS (G12V), leading to the activation of mitogen-activated protein kinase (MAPK) signaling and induction of p-DRP1 (Serine 616). In conclusion, this study firstly revealed that lncRNA LL22NC03-N14H11.1 promoted HCC progression through activating H-RAS/MAPK pathway to induce mitochondrial fission, indicating LL22NC03-N14H11.1 as a novel potential biomarker for HCC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Daoyuan Wang ◽  
Shuxian Yan ◽  
Lihui Wang ◽  
Yunlong Li ◽  
Baoping Qiao

Background. There is more and more evidence showed that circRNAs played essentially role in the regulation of various biological processes. The role of circSLC8A1 in prostate cancer (PCa) is yet little known. Methods. The CircSLC8A1 expression in human prostate cancer was measured by qRT-PCR. The interplay between the specific circRNA, miRNA, and mRNA was investigated by RT-PCR and luciferase reporter assay. Through transient transfection of siRNA, the impacts of circSLC8A1 on PCa were discussed. Cell cycle evaluation, transwell assay, and CCK-8 assay were employed to determine its biological influences. Results. In this study, our data revealed that circSLC8A1 was downregulated in PCa tissues and cells. The reduction of circSLC8A1 resulted in the inhibition of cell proliferation and migration. In mechanism, circSLC8A1 exhibited a direct interaction with miR-21 and displayed as a miRNA sponge to inhibit PCa progression. The functional analysis revealed that the circSLC8A1/miR-21 axis may regulate the cell proliferation, angiogenesis, cell migration, epithelial to mesenchymal transition, MAPK signaling pathway, and chemokine signaling pathway. Conclusions. CircSLC8A1 functioned as an inhibitor of neoplasm via modulating the miR-21 and might serve as a prospective target for the treatment of PCa.


Author(s):  
Daming Chu ◽  
Tengteng Liu ◽  
Yuan Yao ◽  
Nannan Luan

Cervical cancer (CC) is a common gynecological malignancy with high morbidity and mortality. Mounting evidence has highlighted that long noncoding RNAs are essential regulators in cancer development. Herein, long intergenic non-protein coding RNA 997 (LINC00997) was identified for study due to its high expression in CC tissues. The aim of the study is to investigate the function and mechanism of LINC00997 in CC. RT-qPCR revealed that LINC00997 RNA expression was also increased in CC cells and LINC00997 copy number was upregulated in CC tissues. MTT, colony formation and Transwell assays as well as transmission electron microscopy observation exhibited that LINC00997 depletion inhibited CC cell proliferation, migration, invasion and autophagy. The relationship between LINC00997 and its downstream genes was confirmed by RNA pulldown, luciferase reporter and RNA-binding protein immunoprecipitation assays. Mechanistically, LINC00997 upregulated the expression of cullin 2 (CUL2) by interacting with miR-574-3p. Moreover, western blot analysis was employed to detect the protein levels of MAPK pathway-associated factors in CC cells. LINC00997 activated the MAPK signaling by increasing CUL2 expression, thus promoting malignant phenotypes of CC cells. In conclusion, the LINC00997/miR-574-3p/CUL2 axis contributes to CC cell proliferation, migration, invasion and autophagy via the activation of MAPK signaling.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Bao-Long Pan ◽  
Zong-Wu Tong ◽  
Shu-De Li ◽  
Ling Wu ◽  
Jun-Long Liao ◽  
...  

Osteoporosis (OP) is a serious health problem that contributes to osteoporotic structural damage and bone fragility. MicroRNAs (miRNAs) can exert important functions over bone endocrinology. Therefore, it is of substantial significance to clarify the expression and function of miRNAs in bone endocrine physiology and pathology to improve the potential therapeutic value for metabolism-related bone diseases. We explored the effect of microRNA-182-5p (miR-182-5p) on osteoblast proliferation and differentiation in OP rats after alendronate (ALN) treatment by targeting adenylyl cyclase isoform 6 (ADCY6) through the Rap1/mitogen-activated protein kinase (MAPK) signaling pathway. Rat models of OP were established to observe the effect of ALN on OP, and the expression of miR-182-5p, ADCY6 and the Rap1/MAPK signaling pathway-related genes was determined. To determine the roles of miR-182-5p and ADCY6 in OP after ALN treatment, the relationship between miR-182 and ADCY6 was initially verified. Osteoblasts were subsequently extracted and transfected with a miR-182-5p inhibitor, miR-182-5p mimic, si-ADCY6 and the MAPK signaling pathway inhibitor U0126. Cell proliferation, apoptosis and differentiation were also determined. ALN treatment was able to ease the symptoms of OP. miR-182-5p negatively targeted ADCY6 to inhibit the Rap1/MAPK signaling pathway. Cells transfected with miR-182 inhibitor decreased the expression of ALP, BGP and COL I, which indicated that the down-regulation of miR-182-5p promoted cell differentiation and cell proliferation and inhibited cell apoptosis. In conclusion, the present study shows that down-regulated miR-182-5p promotes the proliferation and differentiation of osteoblasts in OP rats through Rap1/MAPK signaling pathway activation by up-regulating ADCY6, which may represent a novel target for OP treatment.


2020 ◽  
Vol 247 (2) ◽  
pp. 139-151
Author(s):  
Isabelle Lee ◽  
Guannan Zhang ◽  
Clementina Mesaros ◽  
Trevor M Penning

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants generated from the incomplete combustion of organic material. PAHs have been studied as genotoxicants, but some also act via non-genotoxic mechanisms in estrogen-dependent malignancies, such as breast cancer. PAHs require metabolic activation to electrophilic metabolites to exert their genotoxicity but non-genotoxic properties may also contribute to their carcinogenicity. The role of PAHs in endometrial cancer, a cancer associated with unopposed estrogen action is unknown. We assessed the metabolism of the representative PAH, benzo[a]pyrene (B[a]P), to estrogenic compounds in Ishikawa human endometrial cells in the presence and absence of cytochrome P450 induction. Using stable-isotope dilution high-performance liquid chromatography and APCI tandem mass spectrometry in the selected reaction monitoring mode, we analyzed B[a]P metabolism in Ishikawa cells. Estrogenic activity of B[a]P metabolites was determined by the endogenous estrogen inducible alkaline phosphatase reporter gene and an exogenous estrogen response element (ERE) luciferase reporter gene construct. We also assessed whether PAHs can induce a proliferative phenotype via estrogen receptor (ER)- and non-ER-regulated pathways. We demonstrate that B[a]P can be metabolized in human endometrial cells into 3-OH-B[a]P and B[a]P-7,8-dione in sufficient amounts to activate ERs. We also show that only B[a]P-7,8-dione induces endometrial cell proliferation at concentrations lower than required to activate the ER; instead non-genomic signaling by the EGF receptor (EGFR) and activation of the mitogen-activated protein kinase (MAPK) pathway was responsible. This work indicates that human endometrial cells can metabolize PAHs into estrogenic metabolites, which may induce cell proliferation through non-ER-regulated pathways.


Sign in / Sign up

Export Citation Format

Share Document