scholarly journals Faster Release of Lumen-Loaded Drugs than Matrix-Loaded Equivalent in Polylactic Acid/Halloysite Nanotubes

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1830 ◽  
Author(s):  
Chaitra Venkatesh ◽  
Oran Clear ◽  
Ian Major ◽  
John G. Lyons ◽  
Declan M. Devine

Nanocomposite-based drug delivery systems with intrinsic controlled release properties are of great interest in biomedical applications. We report a novel polylactic acid (PLA)/halloysite nanotube (HNT) nanocomposite-based drug delivery system. PLA/HNT nanocomposites have shown immense potential for use in biomedical applications due to their favorable cyto- and hemo-compatibility. The objective of this study was to evaluate the release of active pharmaceutical ingredients (API) from PLA/HNT composites matrix and the effect of preloading the API into the lumen of the HNT on its release profile. Aspirin was used in this study as a model drug as it is a common nonsteroidal anti-inflammatory and antiplatelet agent widely used for various medical conditions. These two types of drug-loaded PLA/HNT nanocomposites were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), surface wettability and mechanical testing. Statistical analysis was conducted on numerical data. Drug entrapment and in vitro drug release studies were conducted using UV spectrophotometry. Results indicate that aspirin was successfully loaded into the lumen of HNT, which resulted in the sustained release of aspirin from the nanocomposites. Furthermore, the addition of HNT into the polymer matrix increased the mechanical properties, indicating its suitability as a drug-eluting reinforcing agent.

2017 ◽  
Vol 25 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Neha Mulchandani ◽  
Nimish Shah ◽  
Tejal Mehta

Chitosan is a natural polymer obtained from exoskeletons of crustaceans and polyvinyl alcohol (PVA) is a synthetic polymer which has excellent film forming ability along with non-toxic nature. The current work focuses on synthesizing a smart polymer by copolymerization of natural and synthetic polymers and exploring its applications in drug delivery. The copolymers were blended in different ratios and were synthesized using ammonium ceric nitrate as initiator and glutaraldehyde as a crosslinking agent which were converted to films by casting method. Amoxicillin, as a model drug was incorporated to the copolymerized films to study the in-vitro drug release. The films obtained were evaluated by varying the pH to study the pH responsive nature of films. Drug release studies were performed to obtain the release profile of drug; water uptake capacity of the copolymerized film were measured to determine the swelling behaviour of the films. The films were further characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC) to identify the structural and morphological changes along with thermal transitions. The results indicate that the synthesized copolymers are pH responsive in nature having great potential for application in controlled and targeted drug delivery.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3177
Author(s):  
Arturo E. Aguilar-Rabiela ◽  
Aldo Leal-Egaña ◽  
Qaisar Nawaz ◽  
Aldo R. Boccaccini

Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


2018 ◽  
Vol 53 ◽  
pp. 22-36 ◽  
Author(s):  
Habibollah Faraji ◽  
Reza Nedaeinia ◽  
Esmaeil Nourmohammadi ◽  
Bizan Malaekeh-Nikouei ◽  
Hamid Reza Sadeghnia ◽  
...  

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 53-60
Author(s):  
Purushottam Patil ◽  
Malik Shaikh ◽  
Paresh Mahaparale

Solid self-micro emulsification technique is the new approach for poorly water-soluble and poorly bioavailable drugs by allowing the drug substance to be incorporated into the oil phase and thus having the ability to permeate the GI membrane to a faster extent. Oleic acid, Tween 80, methanol and colloidal silicon dioxide were used as penetrant, surfactant, co-surfactant and adsorbent, respectively. The interaction between drug and excipients was examined by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The results of DSC and FTIR studies did not reveal any possible drug-excipient interactions. The conversion of liquid self-microemulsifying drug delivery system (SMEDDS) into the solid SMEDDS increases the stability of the emulsion formulation achieved by physical adsorption of an adsorbent material. The release of drug from SMEDDS formulation is justified by in-vitro dissolution studies. SMEDDS increases the solubility of the drug and improves the bioavailability, without disturbing gastrointestinal transit. SMEDDS has the potential to provide a useful oral solid dosage form for the poorly water-soluble drug ziprasidone.


Author(s):  
Sai S. Sagiri ◽  
Suraj K. Nayak ◽  
S. Lakshmi ◽  
Kunal Pal

In recent years, the use of biopolymeric nanoparticles as vehicles for drug delivery has increased exponentially. In the present study, chitosan and gelatin nanoparticles were prepared by ionic gelation and desolvation methods, respectively. Salicylic acid was used as the model drug. The nanoparticles were characterized using SEM, XRD analysis and FTIR spectrophotometric studies. In vitro drug release experiments were carried out to understand the mechanism of drug release. SEM micrographs showed the formation of spherical nanoparticles. XRD studies indicated a higher crystalline nature of the chitosan nanoparticles as compared to the gelatin nanoparticles. FTIR studies indicated the presence of salicylic acid within the drug- loaded nanoparticles. Drug release studies indicated that the developed nanoparticles may be used as carriers for various bioactive agents.


2020 ◽  
pp. 004051752097017
Author(s):  
Lu Wang ◽  
Chenmeizi Wang ◽  
Ling Wang ◽  
Qingle Zhang ◽  
Ying Wang ◽  
...  

Prolonging the duration of drug action and reducing toxicity play a vital role in wound administration as they reduce the chance of infection and decrease complications and cost. This study reports the natural antioxidant procyanidins extracted from sea buckthorn (SBT) and laboratory-manufactured Apocynum venetum cellulose nanofiber as core drugs. The sustained-release nanofiber membrane was prepared by electrospinning on polylactic acid/polyvinyl pyrrolidone nanofibers. High-performance liquid chromatography-mass spectrometry was used to identify the phenolic compounds in SBT extracts and confirmed the presence of procyanidins with a content of 0.0345 mg/g. The nanofiber membrane was characterized through transmission electron microscopy, encapsulation efficiency, in vitro drug-release study and antioxidant assay. The results indicated that the extracted procyanidins were successfully encapsulated in the core–sheath structure nanofibers, and the encapsulation efficiency of nanofiber membranes reached 83.84%. In vitro measurements of the delivery showed this core–sheath structure could significantly alleviate the drug burst release, which is followed by a linear and smooth release within 30 hours. Further tests showed that the removal efficiency of 2,2-diphenyl-1-picrylhydrazyl reached 88.62%, indicating that the membranes had high antioxidant activity. This work implies that the combination of Apocynum venetum nanocellulose and emulsion electrospun fibers has promising potential applications in tissue engineering or drug delivery.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 726
Author(s):  
Kuldeep Kumar Bansal ◽  
Ezgi Özliseli ◽  
Gaurav Kumar Saraogi ◽  
Jessica M. Rosenholm

Biodegradable polymers from renewable resources have attracted much attention in recent years within the biomedical field. Lately, poly(δ-decalactone) based copolymer micelles have emerged as a potential drug delivery carrier material as a sustainable alternative to fossil-based polymers. However, their intracellular drug delivery potential is not yet investigated and therefore, in this work, we report on the synthesis and cellular uptake efficiency of poly(δ-decalactone) based micelles with or without a targeting ligand. Folic acid was chosen as a model targeting ligand and Rhodamine B as a fluorescent tracer to demonstrate the straightforward functionalisation aspect of copolymers. The synthesis of block copolymers was accomplished by a combination of facile ring-opening polymerisation and click chemistry to retain the structure uniformity. The presence of folic acid on the surface of micelles with diameter ~150 nm upsurge the uptake efficiency by 1.6 fold on folate receptor overexpressing MDA-MB-231 cells indicating the attainment of targeting using ligand functionality. The drug delivery capability of these carriers was ascertained by using docetaxel as a model drug, whereby the in vitro cytotoxicity of the drug was significantly increased after incorporation in micelles 48 h post incubation. We have also investigated the possible endocytosis route of non-targeted micelles and found that caveolae-mediated endocytosis was the preferred route of uptake. This work strengthens the prospect of using novel bio-based poly(δ-decalactone) micelles as efficient multifunctional drug delivery nanocarriers towards medical applications.


2005 ◽  
Vol 288-289 ◽  
pp. 129-132 ◽  
Author(s):  
Ling Chen ◽  
Xiao Xi Li ◽  
Lin Li ◽  
Bing Li

Colon-targeting drug delivery systems (CDDSs) are employed to improve the bioavailability of protein and peptide drugs through the oral route. So it is important to prepare the drug carriers for oral CDDS. In this study, the Enzyme-Resistant starch (RS) was studied for use as a vehicle in oral colon-targeting drug delivery. The characteristics of RS powders were investigated by X-ray diffraction, polarizing microscopy, DSC and SEM, and their film were examined by enzymatic digestion test. The results showed that RS could be a promising film-former for pharmaceutical coatings, having good stability to enzymatic digestion. Furthermore, a novel peroral formulation using RS coating and bovine serum albumin as a model drug was studied for colon-specific drug delivery in vitro. Drug release studies have shown that RS coating could delivery the drug to the colon and the release rate in simulated colonic fluids was dependent on the biodegradation of RS and its coatings. It is indicated that the RS coated tablet is a potential system for oral CDDS.


2014 ◽  
Vol 1621 ◽  
pp. 87-92 ◽  
Author(s):  
Nadia M. Krook ◽  
Courtney LeBlon ◽  
Sabrina S. Jedlicka

ABSTRACTPoly(glycerol sebacate) (PGS) is a biodegradable and biocompatible elastomer that has been used in a wide range of biomedical applications. While a porous format is common for tissue engineering scaffolds, to allow cell ingrowth, PGS degradation has been primarily studied in a nonporous format. The purpose of this research was to investigate the degradation of porous PGS at three frequently used cure temperatures: 120°C, 140°C, and 165°C. The thermal, chemical, mechanical, and morphological changes were examined using thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, compression testing, and scanning electron microscopy. Over the course of the 16-week degradation study, the samples’ pores collapsed. The specimens cured at 120°C demonstrated the most degradation and became gel-like after 16 weeks. Thermal changes were most evident in the 120°C and 140°C cure PGS specimens, as shifts in the melting and recrystallization temperatures occurred. Porous samples cured at all three temperatures displayed a decrease in compressive modulus after 16 weeks. This in vitro study helped to elucidate the effects of porosity and cure temperature on the biodegradation of PGS and will be valuable for the design of future PGS scaffolds.


Sign in / Sign up

Export Citation Format

Share Document