Optimization of the shaping function of a tapered piezoelectric energy harvester using tabu continuous ant colony system

2019 ◽  
Vol 30 (20) ◽  
pp. 3025-3035
Author(s):  
Hamed Salmani ◽  
GH Rahimi ◽  
Sajad Saraygord Afshari

During the past years, the development of piezoelectric energy harvesters is extensively increased for providing the required energy of sensor nodes. It has been proven that changing the beam’s cross-section along its length direction may lead to extract more power with less mass. In this article, a hybrid metaheuristic algorithm called tabu continuous ant colony system is employed to optimize the tapered piezoelectric energy harvester in a fast and course manner. The exponential and fourth-order polynomial functions are considered as shaping functions for tapering the beam’s width along its length direction. An experiment is also set up to evaluate the performance of the optimization algorithm for the case of exponential shaping function. Finally, the algorithm is applied to optimize the voltage and power per mass of both shaping functions of the tapered piezoelectric energy harvester at the specified excitation frequency.

Author(s):  
Husna Jamal Abdul Nasir ◽  
Ku Ruhana Ku-Mahamud ◽  
Eiji Kamioka

The Ant Colony System (ACS) algorithm has been applied in solving packet routing problems in Wireless Sensor Networks (WSNs). Solving these problems is complicated as packets need to be submitted through sensor nodes which are spatially distributed and heterogeneous by nature. Without an effective packet routing algorithm, energy consumption will be increased while network lifetime will be reduced. Most researches are focused on optimizing the routing process by using predefined parameters within a certain range. However, this approach will not guarantee optimal performance. This paper presents the parameter adaptation values for ACS experimental set-up in validating its performance. Possible values of each parameter within a defined range were employed. Experiments were conducted to obtain the best value of each parameter to be used for throughput, energy consumption, and latency. Results of this study can be adopted to achieve optimal performance for the packet routing process.  


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops an experimentally validated model of a piezoelectric energy harvester under combined aeroelastic-galloping and base excitations. To that end, an energy harvester consisting of a thin piezoelectric cantilever beam subjected to vibratory base excitation is considered. To permit galloping excitation, a bluff body is rigidly attached at the free end such that a net aerodynamic lift is generated as the incoming airflow separates on both sides of the body giving rise to limit cycle oscillations when the flow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitation is derived using the energy approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The partial differential equations of the system are discretized and a reduced-order-model is obtained. The mathematical model is validated by conducting a series of experiments with different loading conditions represented by wind speed, base excitation amplitude, and excitation frequency around the primary resonance.


2021 ◽  
Vol 21 (9) ◽  
pp. 11140-11154
Author(s):  
Po-Chen Yeh ◽  
Tzu-Hao Chien ◽  
Min-Siang Hung ◽  
Chuan-Ping Chen ◽  
Tien-Kan Chung

2020 ◽  
Author(s):  
Haziq Kamal ◽  
Peyman Moghadam

<div>Advances in design and development of light-weight and low power wearable and mobile devices open up the possibility of lifetime extension of these devices from ambient sources through energy harvesting devices as opposed to periodically recharge the batteries. The most commonly available ambient energy source for mobile devices is Kinetic energy harvesters (KEH). The major drawback of the energy harvesters is limited effectiveness of harvesting mechanism near a fixed resonant frequency. It is difficult to harvest a reliable amount of energy from every forms of device motions with different excitation frequencies. To overcome this drawback, in this paper we propose an adaptive electromagnetic energy harvester which utilises spring characteristics to adapt its resonant frequency to match the ambient excitation frequency. This paper presents a prototype design and analysis of an adaptive electromagnetic energy harvester both in simulation and real. The harvester has tested using a specially designed experimental setup and compared with numerical simulations. The proposed solution generates 3.5 times higher maximum power over the default power output and 2.4 times higher maximum frequency compared to a fixed resonant frequency electromagnetic energy harvester.</div>


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


Sign in / Sign up

Export Citation Format

Share Document