scholarly journals Strain sensitivity of steel-fiber-reinforced industrial smart concrete

2019 ◽  
Vol 31 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Erman Demircilioglu ◽  
Egemen Teomete ◽  
Osman E Ozbulut

Self-sensing cementitious composites can enable structures that are capable of carrying the loads applied on them while monitoring their condition. Most of earlier research has focused on the incorporation of nanofillers or microfibers into cement paste or mortar composites. However, there have been very limited number of studies on the development of steel-fiber-reinforced cementitious composites with self-sensing capabilities. This study explores strain sensitivity of concrete mixtures that include coarse aggregates up to 15 mm diameter and steel fibers with a length of 13 mm and a diameter of 0.25 mm. Five different concrete mixtures with steel fibers at 0%, 0.2%, 0.35%, 0.5%, and 0.8% volume ratios were fabricated. Compression tests with simultaneous measurement of strain and electrical resistance were conducted on the cubic specimens. Gauge factor and percent linearity that is a measure of error in strain sensing were calculated. Concrete mixtures with 0.5% steel fibers possess a strong linear relationship between applied strain and electrical resistance change with a gauge factor over 20 times larger than that of traditional metal strain gauges. Phenomenological models for different resistivity and gauge factors of cement paste/mortar with respect to concrete with large aggregates and short–long fiber cement composites were presented.

2010 ◽  
Vol 168-170 ◽  
pp. 2186-2190 ◽  
Author(s):  
Shun Bo Zhao ◽  
Hong Yuan Huo ◽  
Chen Xiao Song ◽  
Li Sha Song

The binary superposition mix design method is constructed to quantitatively calculate the compositions of steel fiber reinforced concrete (SFRC), which brings into sufficient cement paste wrapping steel fibers to strengthen the boundary surfaces of steel fibers with base concrete. The principle of the method is firstly introduced. The experiments were carried out to evaluate the validity of the method. In the experiment, the cubic and axial compressive strength as well as the splitting tensile strength of SFRC affected by the fraction of steel fiber by volume and the average thickness of cement paste wrapping steel fibers were tested. The results are analyzed on the basis of former studies specified in the current technical specification for fiber reinforced concrete structures, which show that the larger strengths especial the splitting tensile strength of SFRC in grade CF50 can be got by the method, but the less splitting tensile strength of SFRC in grade of CF40 should be further studied.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Sara S. Lucchini ◽  
Luca Facconi ◽  
Fausto Minelli ◽  
Giovanni Plizzari

AbstractThin layers of mortar reinforced with steel fibers can be applied on one or both sides of bearing walls as an effective seismic strengthening of existing masonry buildings. To assess the effectiveness of this technique, an experimental study on masonry sub-assemblages was carried out at the University of Brescia. This paper summarizes and discusses the main results of the investigation, which included mechanical characterization tests on masonry and its components as well as on the Steel Fiber Reinforced Mortar (SFRM) used to retrofit the masonry samples. Uniaxial and diagonal compression tests were carried out on both unstrengthened wallets and masonry samples retrofitted with 25 mm thick SFRM coating. Both single-sided and double-sided retrofitting configurations for application on wall surfaces were considered. The results highlighted the ability of the technique to improve the compressive and the shear behavior of masonry, even in case of single-sided strengthening. Moreover, no premature debonding of coating was observed. Lastly, the manuscript presents the results of a numerical investigation that was performed both to simulate the diagonal compression tests described in the first part of the paper and to predict the response of panels with different strengthening configurations.


1987 ◽  
Vol 114 ◽  
Author(s):  
Parviz Soroushian ◽  
Ziadz Bayasi

ABSTRACTSilica fume is known to improve the pore system of cementitious pastes and their adhesion capacity to fibers and other mix inclusions. This study has been mainly concerned with the effect of silica fume on the pull-out strength of randomly oriented steel fibers from concrete. Silica fume effects on the fresh mix workability and the overall flexural and compressive behavior of steel fiber reinforced and plain concretes were also assessed. The only variable in different fibrous and plain mixes was the fraction of portland cement substituted with silica fume. This fraction ranged from 0% to 20%.The workability of plain and fibrous mixes were obtained by slump and inverted slump cone tests, respectively. In both the flexure and compression tests on fiber concrete, the complete load-deformation relationship was obtained. The pull-out strength of randomly oriented fibers was assessed through analysis of the flexural test data.All aspects of the fresh and hardened steel fiber reinforced concrete performance considered in this study, especially the pull-out strength of randomly oriented fibers from concrete, were observed to improve with the increase in silica fume-cementitious ratio up to a certain limit, after which the trends in silica fume effects were reversed.


1994 ◽  
Vol 21 (4) ◽  
pp. 564-575 ◽  
Author(s):  
Nemkumar Banthia ◽  
Jean-Francois Trottier ◽  
Denis Beaupre ◽  
David Wood

Five commercially available steel fibers with different geometries were investigated both in dry-mix and in wet-mix shotcretes. In the dry process, bulk-bin bags with dry premixes were used. In the wet process, ingredients were wet-mixed centrally in a batching plant and then transported to the shooting site in ready-mix trucks. Mixes were shot on wooden forms and the rebound characteristics of the fibers and other ingredients were determined. Once hardened, shotcrete panels were sawed and cored to obtain beam specimens for flexural toughness tests and cylinders for compression tests. Hardened shotcrete specimens were also tested for boiled absorption and permeable voids. The boiled absorption and permeable voids data indicated that an adequately dense in-place shotcrete was obtained for both processes. The rebound of fibers in the dry process was found to be much higher than that in the wet process. Both compressive and flexural strengths were found to be improved because of the addition of fibers. Fibers also led to a significant enhancement in the toughness of shotcrete. Key words: shotcrete, wet mix, dry mix, steel fibers, rebound, toughness.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Author(s):  
Sumith Vangara, S Siva Rama Krishna, Venu Malagavelli, K.Tarunkumar, A. Jagadish Babu

In this present study the durability characteristics of Steel fiber reinforced Self compacting concrete (SFRSCC) is determined for M30 and M40 grade concrete mixes. Along with durability strength and sorptivity is carried out and comparison is made with Plane self-compacting concrete (SCC) by chemical resistances, Initial Surface Absorption Test (ISAT). In the present study, the rational mix design procedure for self-compacting concrete is used. SCC mixes contains large quantity of powder (material whose parcel size is 0.125 mm) to maintain the plastic yield of the properties of fresh concrete as per the general guidelines for design of SCC mixes given in the EFNARC (2005). The present project consists of two phases. In the first phase, SCC mixes for different grades are developed without steel fibers and with steel fibers. The mechanical properties like compressive strength of the different grades were studied. In the second phase, based on the experimental results, durability properties were studied with the using of specimens of size 100 mm × 100 mm × 100 mm. Durability studies like Acid attack factors, Acid-Durability factors, Sulphate attack factors, Sorptivity are studied for the Plain SCC and steel Fiber Reinforced SCC and a comparison is made.


Author(s):  
Natalia Sharma

Abstract: Reinforced concrete structures are frequently in need of repair and strengthening as a result of numerous environmental causes, ageing, or material damage under intense stress conditions, as well as mistakes made during the construction process. RC structures are repaired using a variety of approaches nowadays. The usage of FRC is one of the retrofitting strategies. Steel fiber reinforced concrete (SFRC) was used in this investigation because it contains randomly dispersed short discrete steel fibers that operate as internal reinforcement to improve the cementitious composite's characteristics (concrete). The main rationale for integrating small discrete fibers into a cement matrix is to reduce the amount of cement used. The principal reason for incorporating short discrete fibers into a cement matrix is to reduce cracking in the elastic range, increase the tensile strength and deformation capacity and increase the toughness of the resultant composite. These properties of SFRC primarily depend upon length and volume of Steel fibers used in the concrete mixture. In India, the steel fiber reinforced concrete (SFRC) has seen limited applications in several structures due to the lack of awareness, design guidelines and construction specifications. Therefore, there is a need to develop information on the role of steel fibers in the concrete mixture. The experimental work reported in this study includes the mechanical properties of concrete at different volume fractions of steel fibers. These mechanical properties include compressive strength, split tensile strength and flexural strength and to study the effect of volume fraction and aspect ratio of steel fibers on these mechanical properties. However, main aim of the study was significance of reinforced concrete beams strengthened with fiber reinforced concrete layer and to investigate how these beams deflect under strain. The objective of the investigation was finding that applying FRC to strengthen beams enhanced structural performance in terms of ultimate load carrying capacity, fracture pattern deflection, and mode of failure or not.


Author(s):  
Josef Landler ◽  
Oliver Fischer

<p>To design flat slabs directly supported on columns, the punching shear resistance of the slab is a main factor. It can be increased in the vicinity of the slab-column connection with punching shear reinforcement, like bent up bars or shear studs, to bear the high reaction forces. However, the usage of punching shear reinforcement requires the knowledge of special design rules and often leads to problems and deficiencies in construction.</p><p>Fiber reinforced concrete seems to be a promising alternative to conventional punching shear reinforcement. To investigate the load bearing behavior of the slab-column connection using fiber reinforced concrete, a total of eight punching shear tests were performed. The specimens were realized with a typical top and bottom flexural reinforcement, but without punching shear reinforcement. Varied parameters were the slab thickness with 250 mm and 300 mm and the fiber content V<sub>f</sub> with 0.5 Vol.-% and 1.0 Vol.-%. To investigate the influence of modern fiber types, normal- and high-strength steel fibers with normal- and double-hooked-ends were used.</p><p>In all eight experimental tests, the intended punching shear failure was achieved. The capable load using fiber reinforced concrete increased by 20 % to 50 % compared to the reference tests without steel fibers, depending on the fiber type and the fiber content V<sub>f</sub>. Additionally, this load increase was accompanied by a significant improvement in ductility. The post-cracking behavior was noticeably influenced by the used steel fiber type. An influence of the slab thickness or steel fiber type on the shear strength contributed by the fiber reinforced concrete could not be determined.</p>


2014 ◽  
Vol 629-630 ◽  
pp. 79-84 ◽  
Author(s):  
Hui Xian Yang ◽  
Jing Li ◽  
Yan Sheng Huang

The dynamic material properties of high performance hybrid fiber reinforced cementitious composites (HFRCC) with various volumetric fractions of steel and polyvinyl alcohol (PVA) fibers were studied by the Split Hopkinson Press Bar (SHPB) test. The results show that HFRCC with higher volumetric fraction of steel fibers are more sensitive to stain rate and the dynamic compressive strength increase more prominently with the strain rate increasing, but peak strain shows the opposite trend. The PVA fibers increase the ductility of HFRCC more effectively than steel fibers. Compared to PVA fiber reinforced cementitious composites (FRCC), HFRCC present better dynamic material properties under impact loading.


Sign in / Sign up

Export Citation Format

Share Document