Targeting of mRNAs into Neuronal and Glial Processes: Intracellular and Extracellular Influences

1998 ◽  
Vol 4 (2) ◽  
pp. 77-87 ◽  
Author(s):  
Charles F. Landry ◽  
Anthony T. Campagnoni

Neurons and macroglia share the common, polarizing, morphological feature of multiple processes extending from a cell body, thereby defining two cellular domains. Frequently, specialized cellular activities occur within these processes, such as the dendrites of neurons and the myelin sheath of oligodendrocytes, which serve to define some of the functions of the cell. As a consequence, molecules involved in carrying out these functions need to be targeted to these domains, and mechanisms must exist for selecting and delivering these molecules to their appropriate locations. One mechanism that is emerging as increasingly important in targeting proteins to distal processes of neural cells is the translocation of the mRNAs encoding those proteins. In this review, we present many examples of such translocated mRNAs in neurons, astrocytes, and oligodendrocytes. There is a growing consensus that four major steps occur in mRNA targeting after transcription and exit of these molecules from the nucleus. These include 1) the assembly of mRNA into an RNA-protein granule, presumably around some translocation signal within the mRNA; 2) transport of the mRNA granule complex to distal sites via the cytoskeleton; 3) anchoring of the granule at the targeting site; and 4) translation of the localized mRNA to generate protein products in situ. It has become increasingly apparent that mRNA translocation is an active process, although many of the components of the translocation apparatus remain to be identified. Recent evidence also indicates that a number of factors can regulate the transport of mRNAs from within and without the cell. These include cell-cell contact, differentiation state, electrical activity, and trophic factors, which seem to exert their influence through signal transduction mechanisms that are only beginning to be defined. NEUROSCIENTIST 4:77-87, 1998

Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 3098-3111 ◽  
Author(s):  
Mauricio D. Dorfman ◽  
Cecilia Garcia-Rudaz ◽  
Zefora Alderman ◽  
Bredford Kerr ◽  
Alejandro Lomniczi ◽  
...  

Neurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility. Oocytes lacking NTRK2 do not respond to gonadotropins with activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mediated signaling. Before puberty, oocytes only express a truncated NTRK2 form (NTRK2.T1), but at puberty full-length (NTRK2.FL) receptors are rapidly induced by the preovulatory gonadotropin surge. A cell line expressing both NTRK2.T1 and the kisspeptin receptor (KISS1R) responds to BDNF stimulation with activation of Ntrk2 expression only if kisspeptin is present. This suggests that BDNF and kisspeptin that are produced by granulosa cells (GCs) of periovulatory follicles act in concert to mediate the effect of gonadotropins on Ntrk2 expression in oocytes. In keeping with this finding, the oocytes of NTRK2-intact mice fail to respond to gonadotropins with increased Ntrk2 expression in the absence of KISS1R. Our results demonstrate that the preovulatory gonadotropin surge promotes oocyte survival at the onset of reproductive cyclicity by inducing oocyte expression of NTRK2.FL receptors that set in motion an AKT-mediated survival pathway. They also suggest that gonadotropins activate NTRK2.FL expression via a dual communication pathway involving BDNF and kisspeptin produced in GCs and their respective receptors NTRK2.T1 and KISS1R expressed in oocytes.


Author(s):  
Iryna Butyrska

The author proves that the successful stability of independent Slovenia contributed to a number of factors, existing since its being incorporated in the SFRY. The factor, uniting the state has become the common goal – the aspiration to join the EU. The process of the European integration contributed to the modernization of a number of spheres, in particular social, cultural and economic ones. The global financial and economic crisis has revealed the turmoil in the economy of the state and its leadership was forced to gradually reduce a significant part of social privileges for the population. This caused the tension in the society and reduced the level of the national unity, having a negative impact on people’s wellbeing. However, since 2014, the Prime Minister M. Cherar has been trying to restore people’s trust in the state. The situation is getting better; indicators of trust in government are increasing, which also points to state capacity and political regime stability in Slovenia. Keywords: Slovenia, state stability, social sphere, government


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1014
Author(s):  
Polly-Anne Jeffrey ◽  
Martín López-García ◽  
Mario Castro ◽  
Grant Lythe ◽  
Carmen Molina-París

Cellular receptors on the cell membrane can bind ligand molecules in the extra-cellular medium to form ligand-bound monomers. These interactions ultimately determine the fate of a cell through the resulting intra-cellular signalling cascades. Often, several receptor types can bind a shared ligand leading to the formation of different monomeric complexes, and in turn to competition for the common ligand. Here, we describe competition between two receptors which bind a common ligand in terms of a bi-variate stochastic process. The stochastic description is important to account for fluctuations in the number of molecules. Our interest is in computing two summary statistics—the steady-state distribution of the number of bound monomers and the time to reach a threshold number of monomers of a given kind. The matrix-analytic approach developed in this manuscript is exact, but becomes impractical as the number of molecules in the system increases. Thus, we present novel approximations which can work under low-to-moderate competition scenarios. Our results apply to systems with a larger number of population species (i.e., receptors) competing for a common resource (i.e., ligands), and to competition systems outside the area of molecular dynamics, such as Mathematical Ecology.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Silvia Battistoni ◽  
Victor Erokhin ◽  
Salvatore Iannotta

We explore and demonstrate the extension of the synapse-mimicking properties of memristive devices to a dysfunctional synapse as it occurs in the Alzheimer’s disease (AD) pathology. The ability of memristive devices to reproduce synapse properties such as LTP, LTD, and STDP has been already widely demonstrated, and moreover, they were used for developing artificial neuron networks (perceptrons) able to simulate the information transmission in a cell network. However, a major progress would be to extend the common sense of neuromorphic device even to the case of dysfunction of natural synapses. Can memristors efficiently simulate them? We provide here evidences of the ability of emulating the dysfunctional synaptic behavior typical of the AD pathology with organic memristive devices considering the effect of the disease not only on a single synapse but also in the case of a neural network, composed by numerous synapses.


2015 ◽  
Vol 174 ◽  
pp. 532-541 ◽  
Author(s):  
Benedetto Bozzini ◽  
Matteo Amati ◽  
Patrizia Bocchetta ◽  
Simone Dal Zilio ◽  
Axel Knop-Gericke ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sergey V. Ulianov ◽  
Vlada V. Zakharova ◽  
Aleksandra A. Galitsyna ◽  
Pavel I. Kos ◽  
Kirill E. Polovnikov ◽  
...  

AbstractMammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome.


1984 ◽  
Vol 4 (1) ◽  
pp. 203-211
Author(s):  
K Tanaka ◽  
T Oshima ◽  
H Araki ◽  
S Harashima ◽  
Y Oshima

A mutation defective in the homothallic switching of mating type alleles, designated hml alpha-2, has previously been characterized. The mutation occurred in a cell having the HO MATa HML alpha HMRa genotype, and the mutant culture consisted of ca. 10% a mating type cells, 90% nonmater cells of haploid cell size, and 0.1% sporogenous diploid cells. Genetic analyses revealed that nonmater haploid cells have a defect in the alpha 2 cistron at the MAT locus. This defect was probably caused by transposition of a cassette originating from the hml alpha-2 allele by the process of the homothallic mating type switch. That the MAT locus of the nonmater cells is occupied by a DNA fragment indistinguishable from the Y alpha sequence in electrophoretic mobility was demonstrated by Southern hybridization of the EcoRI-HindIII fragment encoding the MAT locus with a cloned HML alpha gene as the probe. The hml alpha-2 mutation was revealed to be a one-base-pair deletion at the ninth base pair in the X region from the X and Y boundary of the HML locus. This mutation gave rise to a shift in the open reading frame of the alpha 2 cistron. A molecular mechanism for the mating type switch associated with the occurrence of sporogenous diploid cells in the mutant culture is discussed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mohammed Kaplan ◽  
Debnath Ghosal ◽  
Poorna Subramanian ◽  
Catherine M Oikonomou ◽  
Andreas Kjaer ◽  
...  

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here, we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor’s stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.


2021 ◽  
Author(s):  
Zijun Li ◽  
Angela Buchholz ◽  
Arttu Ylisirniö ◽  
Luis Barreira ◽  
Liqing Hao ◽  
...  

Abstract. Efforts have been spent on investigating the isothermal evaporation of α-pinene SOA particles at ranges of conditions and decoupling the impacts of viscosity and volatility on evaporation. However, little is known about the evaporation behavior of SOA particles from biogenic organic compounds other than α-pinene. In this study, we investigated the isothermal evaporation behaviors of α-pinene (αpin) and sesquiterpene mixture (SQTmix) SOA particles under a series of relative humidity (RH) conditions. With a set of in-situ instruments, we monitored the evolution of particle size, volatility, and composition during evaporation. Our finding demonstrates that the SQTmix SOA particles evaporated slower than the αpin ones at any set of RH (expressed with the volume fraction remaining (VFR)), which is primarily due to their lower volatility and possibly aided by higher viscosity under dry conditions. We further applied positive matrix factorization (PMF) to thermal desorption data containing volatility and composition information. Analyzing the net change ratios (NCRs) of each PMF-resolved factor, we can quantitatively compare how each sample factor evolves with increasing evaporation time/RH. When sufficient particulate water content was present in either SOA system, the most volatile sample factor was primarily lost via evaporation and changes in other sample factors were mainly governed by aqueous-phase processes. The evolution of each sample factor of SQTmix SOA particles was controlled by a single type of process, whereas for αpin SOA particles it was regulated by multiple processes. As indicated by the coevolution of VFR and NCR, the effect of aqueous-phase processes could vary from one to another according to particle type, sample factors and evaporation timescale.


Sign in / Sign up

Export Citation Format

Share Document