Translating Informal Theories Into Formal Theories: The Case of the Dynamic Computational Model of the Integrated Model of Work Motivation

2018 ◽  
Vol 23 (2) ◽  
pp. 238-274 ◽  
Author(s):  
Jeffrey B. Vancouver ◽  
Mo Wang ◽  
Xiaofei Li

Theories are the core of any science, but many imprecisely stated theories in organizational and management science are hampering progress in the field. Computational modeling of existing theories can help address the issue. Computational models are a type of formal theory that are represented mathematically or by other formal logic and can be simulated, allowing theorists to assess whether the theory can explain the phenomena intended as well as make testable predictions. As an example of the process, Locke’s integrated model of work motivation is translated into static and dynamic computational models. Simulations of these models are compared to the empirical data used to develop and test the theory. For the static model, the simulations revealed largely strong associations with robust empirical findings. However, adding dynamics created several challenges to key precepts of the theory. Moreover, the effort revealed where empirical work is needed to further refine or refute the theory. Discussion focuses on the value of computational modeling as a method for formally testing, pruning, and extending extant theories in the field.

2016 ◽  
Vol 202 (3-4) ◽  
pp. 250-266 ◽  
Author(s):  
Kyle S. Martin ◽  
Kelley M. Virgilio ◽  
Shayn M. Peirce ◽  
Silvia S. Blemker

Skeletal muscle has an exceptional ability to regenerate and adapt following injury. Tissue engineering approaches (e.g. cell therapy, scaffolds, and pharmaceutics) aimed at enhancing or promoting muscle regeneration from severe injuries are a promising and active field of research. Computational models are beginning to advance the field by providing insight into regeneration mechanisms and therapies. In this paper, we summarize the contributions computational models have made to understanding muscle remodeling and the functional implications thereof. Next, we describe a new agent-based computational model of skeletal muscle inflammation and regeneration following acute muscle injury. Our computational model simulates the recruitment and cellular behaviors of key inflammatory cells (e.g. neutrophils and M1 and M2 macrophages) and their interactions with native muscle cells (muscle fibers, satellite stem cells, and fibroblasts) that result in the clearance of necrotic tissue and muscle fiber regeneration. We demonstrate the ability of the model to track key regeneration metrics during both unencumbered regeneration and in the case of impaired macrophage function. We also use the model to simulate regeneration enhancement when muscle is primed with inflammatory cells prior to injury, which is a putative therapeutic intervention that has not yet been investigated experimentally. Computational modeling of muscle regeneration, pursued in combination with experimental analyses, provides a quantitative framework for evaluating and predicting muscle regeneration and enables the rational design of therapeutic strategies for muscle recovery.


2019 ◽  
Vol 30 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Conrad Perry ◽  
Marco Zorzi ◽  
Johannes C. Ziegler

Learning to read is foundational for literacy development, yet many children in primary school fail to become efficient readers despite normal intelligence and schooling. This condition, referred to as developmental dyslexia, has been hypothesized to occur because of deficits in vision, attention, auditory and temporal processes, and phonology and language. Here, we used a developmentally plausible computational model of reading acquisition to investigate how the core deficits of dyslexia determined individual learning outcomes for 622 children (388 with dyslexia). We found that individual learning trajectories could be simulated on the basis of three component skills related to orthography, phonology, and vocabulary. In contrast, single-deficit models captured the means but not the distribution of reading scores, and a model with noise added to all representations could not even capture the means. These results show that heterogeneity and individual differences in dyslexia profiles can be simulated only with a personalized computational model that allows for multiple deficits.


Author(s):  
Paul K Davis ◽  
Angela O’Mahony

Representing causal social science knowledge in models is difficult: much of the best knowledge is qualitative and ambiguously conditional, unlike the knowledge in “physics models.” This paper describes a stream of RAND research that began with qualitative models providing a structured depiction of casual factors creating effects. That has subsequently been extended to an unusual kind of uncertainty sensitive computational modeling that enables exploratory reasoning and analysis. We illustrate the approach with applications to counterterrorism, detection of terrorists, and nuclear crises. We believe that the approach will complement other approaches that can reflect social science phenomena [see other papers in this special issue of JDMS] and that the approach has broad potential within and beyond the national security domain. We also believe that it has the potential to inform empirical work—encouraging a transition from the step-by-step empirical testing of simple discrete hypotheses to the testing and refinement of more comprehensive causal models.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lichao Zhang ◽  
Zihong Huang ◽  
Liang Kong

Background: RNA-binding proteins establish posttranscriptional gene regulation by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. The immunoprecipitation experiments could identify interaction between RNA and proteins, but they are limited due to the experimental environment and material. Therefore, it is essential to construct computational models to identify the function sites. Objective: Although some computational methods have been proposed to predict RNA binding sites, the accuracy could be further improved. Moreover, it is necessary to construct a dataset with more samples to design a reliable model. Here we present a computational model based on multi-information sources to identify RNA binding sites. Method: We construct an accurate computational model named CSBPI_Site, based on xtreme gradient boosting. The specifically designed 15-dimensional feature vector captures four types of information (chemical shift, chemical bond, chemical properties and position information). Results: The satisfied accuracy of 0.86 and AUC of 0.89 were obtained by leave-one-out cross validation. Meanwhile, the accuracies were slightly different (range from 0.83 to 0.85) among three classifiers algorithm, which showed the novel features are stable and fit to multiple classifiers. These results showed that the proposed method is effective and robust for noncoding RNA binding sites identification. Conclusion: Our method based on multi-information sources is effective to represent the binding sites information among ncRNAs. The satisfied prediction results of Diels-Alder riboz-yme based on CSBPI_Site indicates that our model is valuable to identify the function site.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


2021 ◽  
Vol 11 (4) ◽  
pp. 1817
Author(s):  
Zheng Li ◽  
Azure Wilson ◽  
Lea Sayce ◽  
Amit Avhad ◽  
Bernard Rousseau ◽  
...  

We have developed a novel surgical/computational model for the investigation of unilat-eral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10–11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction, and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides was consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.


2021 ◽  
pp. 174569162097058
Author(s):  
Olivia Guest ◽  
Andrea E. Martin

Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.


2007 ◽  
Vol 09 (03) ◽  
pp. 515-525
Author(s):  
KIMMO ERIKSSON ◽  
JONAS SJÖSTRAND

The Swedish rent control system creates a white market for swapping rental contracts and a black market for selling rental contracts. Empirical data suggests that in this black-and-white market some people act according to utility functions that are both discontinuous and locally decreasing in money. We discuss Quinzii's theorem for the nonemptiness of the core of generalized house-swapping games, and show how it can be extended to cover the Swedish game. In a second part, we show how this theorem of Quinzii and her second theorem on nonemptiness of the core in two-sided models are both special cases of a more general theorem.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hae Deok Jung ◽  
Yoo Jin Sung ◽  
Hyun Uk Kim

Chemotherapy is a mainstream cancer treatment, but has a constant challenge of drug resistance, which consequently leads to poor prognosis in cancer treatment. For better understanding and effective treatment of drug-resistant cancer cells, omics approaches have been widely conducted in various forms. A notable use of omics data beyond routine data mining is to use them for computational modeling that allows generating useful predictions, such as drug responses and prognostic biomarkers. In particular, an increasing volume of omics data has facilitated the development of machine learning models. In this mini review, we highlight recent studies on the use of multi-omics data for studying drug-resistant cancer cells. We put a particular focus on studies that use computational models to characterize drug-resistant cancer cells, and to predict biomarkers and/or drug responses. Computational models covered in this mini review include network-based models, machine learning models and genome-scale metabolic models. We also provide perspectives on future research opportunities for combating drug-resistant cancer cells.


Sign in / Sign up

Export Citation Format

Share Document