Experimental study on quasi-static penetration process of cylindrical indenters with different nose shapes into the hybrid composite panels

2018 ◽  
Vol 53 (1) ◽  
pp. 107-123 ◽  
Author(s):  
Seyed Ahmad Taghizadeh ◽  
Gholamhossein Liaghat ◽  
Abbas Niknejad ◽  
Ehsan Pedram

The main aim of the present research is to investigate the quasi-static penetration process of cylindrical indenters with different nose shapes into multilayered composite panels made of Dyneema and Glass woven fibers, and aluminum face sheets. For better understanding of the perforation mechanism of the composite panels, effects of indenter geometry, stacking sequences, and boundary conditions are studied and their effects on energy absorption, specific absorbed energy, maximum deformation, peak load, and failure modes are evaluated and discussed. Samples with different layering configurations loaded under quasi-static punch and indentation with loading rate of 5 mm/min using universal testing machine and cylindrical rigid indenters with different nose shapes geometries consist of blunt, hemispherical, conical, and ogival. Regarding the boundary condition effects, two different rigid fixtures are designed and manufactured with the same external square perimeter (250 × 250 mm) and two different internal perimeters of circular and square shapes respectively, with diameter of 15 mm and edge side of 100 mm. Results show that the hybrid composite panels composed of Dyneema sheets, exhibits significantly better load carrying capacity and specific absorbed energy under both loading conditions. Indenter nose shape significantly affects elastic load, peak load, and energy absorption and maximum deformation. Furthermore, from visual observations based on digital microscopic images, fiber breakage, fiber pull out, intralaminar delamination, and debonding between the composite layers within the damage zone were inspected and recognized as the main damage mechanisms of panels. Output data obtained from all the experimental investigation were reported, discussed, and commented upon.

Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.


2012 ◽  
Vol 626 ◽  
pp. 1038-1041 ◽  
Author(s):  
Akbar Othman ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
Nik Abdullah Nik Mohamed ◽  
Helmi Rashid

The present papers determine the effect of composite pultrusion square tubes E-glass polyester empty and polymeric foam-filled subjected to axial compressive loading. The specimens of square composite pultrusion were compressed experimentally under axial loadings to examine the effect of empty and polymeric foam-filled with different wall-thickness. The wall-thickness was used in this study were 2.1 and 2.4 mm. During the experimental observation, three characteristic crushing stages were identified as initial peak load, progressive crushing and compaction zone stages. The composite pultrusion square tube profile were analyzed and investigated in terms of crashworthiness parameters to meet the improvement of structural material widely used in automobile, aerospace and marine applications. Result obtained from experimental analysis such that initial peak load, mean load, energy absorption and specific energy absorption versus displacement curves were compared for each specimen. Results showed that the tubes energy absorption was affected significantly by different tube profile. It is also found that the polymeric foam-filled exhibit superb crashworthy structure on specific absorbed energy and the amount of initial peak load, mean load and absorbed energy recorded higher than the empty tube profiles.


Author(s):  
M. Abdel-Haq ◽  
G. Newaz

Non-linear finite element technique was used to predict the crushing response and energy absorption of fiberglass/polyester tubes under quasi-static and dynamic conditions. The major failure modes including axial splitting of the tube wall and delamination were modeled using the available features in LSDYNA and ABAQUS codes for dynamic and quasi-static analysis, respectively. The results show that the finite element models were able to predict the average and peak load levels for the tubes with and without using an external constraint. Finally, it was concluded that modeling the major failure modes in the crushing process in addition to using an appropriate material failure model is essential to capture the load levels and specific energy absorption of the crushed tubes.


2013 ◽  
Vol 594-595 ◽  
pp. 707-710
Author(s):  
A.A. Arifin ◽  
A. Othman

In this paper presents the effect of energy absorption on thin-walled aluminum cross-section square tubes wrapped with woven E-glass fiber laminated composite subjected to quasi-static axial compression. The compression test was carried out experimentally to examine the amount of energy can be absorbed as well as to observe for failure behavior for each specimens. The wall-thicknesses aluminum square of 1.9 mm was investigated and woven E-glass fiber laminate reinforced polyester resin was examined. Two different numbers of layers woven E-glass were investigated and examined. Result obtained from experimental analysis such that initial peak load, mean load, quasi-static absorbed energy against displacement curves were recoded and plotted then compared for each specimen profile. Results indicated that the tubes crashworthy structure was affected significantly by different number of layers wrapped on wall aluminum square profile and also that the effect of crushing behaviors and failure modes was discussed.


2001 ◽  
Author(s):  
Thomas Brimhall ◽  
Hasetetsion G. Mariam

Abstract Testing of components is a usual method to evaluate structures, joining methods, and materials prior to full scale testing. Ambient temperature dynamic crush testing was performed on steel and composite sub-component front frame rails to compare the energy absorption and evaluate crush behavior. The sub-component composite frame rails were fabricated from two parts, an upper and lower, and bonded using three adhesives: Ashland polyurethane, Lord epoxy, and 3M epoxy. Prior to the dynamic test of the rails, single lap shear coupon tests were performed at ambient temperature and elevated temperature, 135°C, to evaluate relative bond strength of these adhesives. Testing was performed at elevated temperature because adhesives used for structural bonding in automotive, specifically under-hood, applications can be subjected to elevated temperatures. All three adhesives tested showed reduced bond strength at elevated temperatures. At room temperature, the Ashland urethane and Lord epoxy adhesives were observed to have comparable higher bond strength with the composite-to-composite lap shear coupons compared to the 3M epoxy. However, the crush failure mode for the composite tubes was confined to the substrate and the mean crush load was independent of the adhesive used for fabrication. Progressive crushing of the rail specimens was observed for all specimens tested. The amount of energy absorbed and crush mode for each rail design depended on its structural and material characteristics. The steel specimen absorbed energy by localized buckling in an accordion crush mode. The composite specimens absorbed energy by fracturing the composite matrix, delamination, fracture of the reinforcement fibers, and friction between the fracture and crushing surfaces. The crushing process of the steel rail was initiated by fabricated corrugations in the rail comers at the front, or impact, end of the rail. The composite rail crush event was initiated with an aluminum plug trigger designed to cause the composite rail to split at the comers with fracture of the composite matrix and delamination of the composite plies. Glass fibers were observed to fracture primarily at the tube corners. Fiber fracture elsewhere was infrequent. Close examination of the bonded joint fracture surface showed extensive fiber tear-out indicating that the failure was in the composite, not the adhesive. Mean crush load for the steel rail was 60% higher than the average mean load for the composite rails. The peak load for the steel rail was 71% higher than the average peak load for the composite rails. Specific energy absorption (SEA) of the steel rail was calculated to be 6.34 kJ/kgm compared with an average of 10.5 kJ/kgm for the composite rails.


2015 ◽  
Vol 15 (04) ◽  
pp. 1450063 ◽  
Author(s):  
Huifeng Xi ◽  
Liqun Tang ◽  
Jilin Yu ◽  
Xiaoyang Zhang ◽  
Beixin Xie ◽  
...  

This paper presents the low-velocity impact tests on the sandwich plates with aluminum foam core and aluminum skins at elevated temperatures. A furnace, attached to an Instron Dynatup 9250 HV drop hammer system, was designed to accomplish the penetration tests at temperatures up to 500°C. In order to process the experimental data accurately, the numerical vibration analysis was conducted to determine the threshold frequencies of the fast Fourier transform (FFT) filter for the original impact data. The experimental results showed that the failure modes of the sandwich, peak load and absorbed energy varied obviously with temperatures. Furthermore, the results showed that the failure modes of the top skin and metal foam core showed minor changes with respect to temperatures. Whereas the failure mode of the bottom skin and peak loads changed significantly with respect to temperatures. Also, the absorbed energy revealed a three-stage variation with the change of temperature.


2014 ◽  
Vol 23 (2) ◽  
pp. 096369351402300
Author(s):  
Ping Zhang ◽  
Liang-Jin Gui ◽  
Zi-Jie Fan ◽  
Jing-Yu Liu

This paper presented an experimental study on the low-velocity impact response of triaxial braided composite circular tubes, which were fabricated with S-glass/epoxy composite. The impact responses were recorded and analyzed in terms of impact load-displacement curves and specific energy absorption. In addition, four basic failure modes called delaminating, splaying, fragmental fracture and progressive folding were founded. The levels of the mean impact load and specific energy absorption (SEA) are determined by the energy absorption mechanisms, which are related to the dominant failure modes of the tubes. In general, delamination which exhibits the poor energy absorbing performance is the dominant failure mode for all the specimens. Impact test results showed that all three types of tubes had almost the same SEA. Compared to the quasi-static test results, the first peak load and the mean load decrease at about 50% and 10% respectively, SEA generally decreases at an average level 10%.


2017 ◽  
Vol 52 (14) ◽  
pp. 1887-1897 ◽  
Author(s):  
Chang Yan ◽  
Xuding Song ◽  
Hui Zhu ◽  
Chuanhe Jing ◽  
Shuo Feng

Sandwich panels with carbon fiber fabric/epoxy resin face-sheet and aluminum foam core have a potential application value in the engineering field. To study the bending mechanical properties of the reinforced sandwich structure, three-point bending test was conducted by using WDW-T100 electronic universal tensile testing machine. The relation between load and displacement of the aluminum foam sandwich was obtained. Deformations and failure modes of the specimens were recorded. Scanning electron microscopy was used to observe the failure mechanism. Results showed that when aluminum foam was reinforced by carbon fiber fabric as face-sheet, its flexural load-carrying capacity and energy absorption ability improved significantly. Foam core density and number of carbon fiber plies had serious impacts on the peak load value and energy absorption value of the composite structure. It was suggested that aluminum foam core sandwich structure with low foam core density of 0.49 g/cm3 and 5 plies of carbon fiber fabric had the highest energy absorption ability and medium load-carrying ability. Failure modes analysis showed that shear failure leaded to the final failure of sandwich panels with medium peak load and interface de-bonding leaded to the final failure of sandwich panels with high peak load.


2012 ◽  
Vol 535-537 ◽  
pp. 121-132
Author(s):  
Lu Lu Liu ◽  
Hai Jun Xuan ◽  
Guang Tao Chen ◽  
Dong Ye ◽  
Wei Rong Hong ◽  
...  

Abstract. Ballistic impact tests were preformed on triaxial braided composite panels using blade-like projectile in a way that approximates the impact velocity, deformation modes, and strain energy density at failure for composite fan case material during blade-out event. The failure modes are identified from impact test results. The main failure modes are fiber shear failure and matrix crush failure in the impact surface and fiber tensile failure, fiber pull-out, matrix cracking and delamination in the exit surface. Finite element model is developed to analyze the damage evolution of penetration process. It is found that the penetration process can be subdivided into 3 stages based on different damage mechanisms and the energy absorption mechanism in each phase is illustrated too.


Sign in / Sign up

Export Citation Format

Share Document