Survival capability of healthcare-associated, multidrug-resistant bacteria on untreated and on antimicrobial textiles

2018 ◽  
Vol 48 (7) ◽  
pp. 1113-1135 ◽  
Author(s):  
Adrienn Hanczvikkel ◽  
András Víg ◽  
Ákos Tóth

Healthcare-associated infections are of global concern, and textiles can contribute to the transmission of pathogens. In this study, we examined quantitatively the survival capability of 60 multidrug-resistant bacterial strains from four species ( Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus and Enterococcus faecium) on untreated cotton textile in clinically relevant incubation periods. We determined the antibacterial efficiency of textiles treated either with quaternary ammonium compound (QAC)-containing Sanitized T99-19 liquid (50 m/m% Dimethyltetradecyl (3-(trimethoxysilyl)propyl) ammonium-chloride) or with silver salt-containing Sanitized T27-22 Silver liquid (2 m/m% AgCl and 8 m/m% TiO2) as well. Finally, we compared the results of the healthcare-associated, multidrug-resistant strains and antibiotic-sensitive, quality control standard strains (ATCC 25922, ATCC 11105 Escherichia coli, and ATCC 25923, ATCC 6538 Staphylococcus aureus) often used in antimicrobial efficiency tests. The results revealed that all investigated multidrug-resistant bacteria are able to survive on untreated cotton textile and pose health risk in hospitals. During one day the T27-22-Silver-treated textile was able to eliminate most of the Gram-positive pathogens, reducing the risk of cross-contamination, but none of the examined agents destroyed the multidrug-resistant, Gram-negative isolates. The antibiotic-susceptible and the multidrug-resistant Staphylococcus aureus strains had similar survival capability and biocide-tolerance, while the risk of infections caused by multidrug-resistant, Gram-negative pathogens could be extremely underestimated using only ATCC Escherichia coli standard strains. Our results also draw attention to the careful evaluation of antimicrobial efficiency tests and indicate that a significant reduction of bacterial count does not necessarily mean significant antibacterial efficiency that would be suitable to avoid infections.

2020 ◽  
Vol 8 (10) ◽  
pp. 1487
Author(s):  
Marta Aires-de-Sousa ◽  
Claudine Fournier ◽  
Elizeth Lopes ◽  
Hermínia de Lencastre ◽  
Patrice Nordmann ◽  
...  

In order to evaluate whether seagulls living on the Lisbon coastline, Portugal, might be colonized and consequently represent potential spreaders of multidrug-resistant bacteria, a total of 88 gull fecal samples were screened for detection of extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacteriaceae for methicillin-resistant Staphylococcus aureus (MRSA) and for vancomycin-resistant Enterococci (VRE). A large proportion of samples yielded carbapenemase- or ESBL-producing Enterobacteriaceae (16% and 55%, respectively), while only two MRSA and two VRE were detected. Mating-out assays followed by PCR and whole-plasmid sequencing allowed to identify carbapenemase and ESBL encoding genes. Among 24 carbapenemase-producing isolates, there were mainly Klebsiella pneumoniae (50%) and Escherichia coli (33%). OXA-181 was the most common carbapenemase identified (54%), followed by OXA-48 (25%) and KPC-2 (17%). Ten different ESBLs were found among 62 ESBL-producing isolates, mainly being CTX-M-type enzymes (87%). Co-occurrence in single samples of multiple ESBL- and carbapenemase producers belonging to different bacterial species was observed in some cases. Seagulls constitute an important source for spreading multidrug-resistant bacteria in the environment and their gut microbiota a formidable microenvironment for transfer of resistance genes within bacterial species.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shayan Chen ◽  
Jiyu Shi ◽  
Minghui Chen ◽  
Jun Ma ◽  
Zhaowei Zeng ◽  
...  

Abstract Background Infection in patients with acute pancreatitis, especially severe acute pancreatitis patients, is a common and important phenomenon, and the distributions and drug resistance profiles of bacteria causing biliary infection and related risk factors are dynamic. We conducted this study to explore the characteristics of and risk factors for bacterial infection in the biliary tract to understand antimicrobial susceptibility, promote the rational use of antibiotics, control multidrug-resistant bacterial infections and provide guidance for the treatment of acute pancreatitis caused by drug-resistant bacteria. Methods The distribution of 132 strains of biliary pathogenic bacteria in patients with acute pancreatitis from January 2016 to December 2020 were analyzed. We assessed drug resistance in the dominant Gram-negative bacteria and studied the drug resistance profiles of multidrug-resistant bacteria by classifying Enterobacteriaceae and nonfermentative bacteria. We then retrospectively analyzed the clinical data and risk factors associated with 72 strains of Gram-negative bacilli, which were divided into multidrug-resistant bacteria (50 cases) and non-multidrug-resistant bacteria (22 cases). Results The main bacteria were Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli had a 66.67% detection rate. Acinetobacter baumannii had more than 50.00% drug resistance to carbapenems, ESBL-producing Klebsiella pneumoniae had 100.00% drug resistance, and Pseudomonas aeruginosa had 66.67% resistance to carbapenems. Multivariate logistic regression analysis suggested that the administration of third- or fourth-generation cephalosporins was an independent risk factor for Gram-negative multidrug-resistant biliary bacterial infection in acute pancreatitis patients. Conclusion Drug resistance among biliary pathogens in acute pancreatitis patients remains high; therefore, rational antimicrobial drug use and control measures should be carried out considering associated risk factors to improve diagnosis and treatment quality in acute pancreatitis patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2019 ◽  
Vol 20 (4) ◽  
pp. 956-964 ◽  
Author(s):  
DIAH AYUNINGRUM ◽  
RHESI KRISTIANA ◽  
AYUNDA AINUN NISA ◽  
SEPTHY KUSUMA RADJASA ◽  
SAKTI IMAM MUCHLISSIN ◽  
...  

Abstract. Ayuningrum D, Kristiana R, Nisa AA, Radjasa SK, Muchlissin SI, Radjasa OK, Sabdono A, Trianto A. 2019. Bacteria associated with tunicate, Polycarpa aurata, from Lease Sea, Maluku, Indonesia exhibiting anti-multidrug resistant bacteria. Biodiversitas 20: 956-964. Tunicate is a rich secondary metabolites producer with various biological activities whether as an original producer or produced by the associated microorganisms. In this study, a total of 11 tunicate specimens were identified as Polycarpa aurata with four color variations based on morphological characteristic and COI gene identification and BLAST analysis. The P. aurata associated-bacteria were isolated and tested for antimicrobial activity against multi-drug resistant (MDR) bacteria. A total of 86 axenic isolates were successfully purified. Furthermore, nine isolates (10.5%) exhibited antibacterial activity on preliminary screening. Nine prospective isolates were fermented in respective medium (Zobell 2216, modified M1 or modified ISP2 media) then extracted using ethyl acetate. The ethyl acetate extracts from liquid fermentation were tested against MDR Escherichia coli, MDR Bacillus cereus, Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Sensitive and Staphylococcus aureus (MSSA). As a result, seven isolates (8.1%) still retained the activity at the extract concentration 150 µg/disk. Molecular analysis based on 16S rDNA sequencing revealed the most active isolates, TSB 47, TSC 10 and TSB 34 identified as Bacillus tropicus, Vibrio alginolyticus and Virgibacillus massiliensis, with BLAST homology 99%.


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2013 ◽  
Vol 33 (7) ◽  
pp. 975-981 ◽  
Author(s):  
Alexandra Alexopoulou ◽  
Nikolaos Papadopoulos ◽  
Dimitrios G. Eliopoulos ◽  
Apostolia Alexaki ◽  
Athanasia Tsiriga ◽  
...  

2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


Author(s):  
Evelien Oostdijk ◽  
Marc Bonten

Many infections are caused by enteric bacilli, presumably from endogenous origin. Selective decontamination of the digestive tract (SDD) was developed to selectively eliminate the aerobic Gram-negative bacilli from the digestive tract, leaving the anaerobic flora unaffected. As an alternative to SDD, investigators have evaluated the effects of selective oropharyngeal decontamination (SOpD) alone. Most detailed data on the effects of SDD and SOpD in ICU-patients come from two studies performed in Dutch ICUs. The Dutch studies provide strong evidence that SDD and SOpD reduce ICUmortality, ICU-acquired bacteraemia with Gram-negative bacteria, and systemic antibiotic use. Although successful application has been reported from several solitary ICUs across Europe, it is currently unknown to what extent these effects can be achieved in settings with different bacterial ecology. More studies are needed on the use of SDD or SOpD as a measure to control outbreaks with multidrug resistant bacteria.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document