Development and mechanical properties of three-dimensional flat-knitted fabrics with reinforcement yarns

2022 ◽  
pp. 152808372110460
Author(s):  
Jiangtao Tan ◽  
Gaoming Jiang ◽  
Zhe Gao ◽  
Pibo Ma ◽  
Peixiao Zheng

Three-dimensional (3D) flat-knitted fabrics have become a topic of interest in the field of composites in recent years because of the growing need for rapid preparation of complicated shape preforms. In order to improve the mechanical properties of 3D flat-knitted fabrics, two types of 3D flat-knitted fabrics with reinforcement yarn (FKFR) were developed using ultra-high molecular weight polyethylene (UHMWPE) yarn. Their basic structures were composed of plain structure and interlock structure with tuck stitch, respectively, and the reinforcement yarn was integrated into the fabric as the weft inlay. The tensile, bending, drape, and bursting properties of the two fabrics were characterized. Results showed that the basic structure of the fabric has impacted on the mechanical properties of the fabric significantly. The tensile and bending properties of the fabric with interlock structure were better than that of the fabric with plain structure. During the transverse stretching process, the surface structure of the fabric with interlock structure was more stable. Moreover, transverse yarn strength utilization of the fabric with interlock structure was 1.05, which reached the level of ordinary woven fabric. In addition, the bursting force of the fabric with excellent tensile properties was lower than that of the fabric with a plain structure because the latter has better extensibility.

2011 ◽  
Vol 332-334 ◽  
pp. 621-624
Author(s):  
Xin E Li ◽  
Yi Ren

The advantages of the bag house are expounded in this paper. The some technical parameters of the filter bag are introduced. The weaving plan of three-dimensional angle-interlock tubular fabric is designed. The key points of weave production are explained. Use of angle-interlock tubular structure can weave seamless and thick the filter bag, and improve the filter efficiency of woven fabric. The development of seamless filter bag save sewing process, and improve the production efficiency, and save cost. The seamless filter bag with three-dimensional angle-interlock structure can be widely used to a lot of areas of flue gas filter. It will play a positive role to protect the environment.


2012 ◽  
Vol 627 ◽  
pp. 33-36
Author(s):  
Li Na Chen ◽  
Fan Rong Kong ◽  
Rui Chao Xu

In order to have a better understanding and using of the new type of regenerated flax fiber –Jutecell, Mechanical properties of three kinds of fabrics which knitted by Jutecell, cotton and bamboo fiber were tested, focusing on the stretching, bursting, abrasion-resistant and anti-pilling properties, through the comparison and analysis of the three kinds of fabrics, the results shown that: The strength of Jutecell fabric is the best, followed by regenerated bamboo fiber, natural cotton fibre is the worst. The stretching, bursting and abrasion-resistant of the fabrics knitted by Jutecell yarn are all better than that of the cotton and bamboo fiber knitted fabrics; but its anti-pilling performance is poor, a appropriate measure must be taken in the production process to reduce the pilling phenomenon of clothes made by Jutecell yarns.


2012 ◽  
Vol 488-489 ◽  
pp. 659-665 ◽  
Author(s):  
Cai Jun Liu ◽  
Jian Dong Zuo

The effect of electromagnetism on the shear rate and the apparent viscosity of the high density polyethylene/ultra high molecular weight polyethylene (HDPE/UHMWPE) blends are carried out by the different processing ways of the vibration capillary rheology, which is to be discussed. The mechanical properties and surface of blown films and the blend DSC curves of the of the vibration extruder are also to be discussed. The results show that the effect of vibration on the viscosity of the blends by direct blending was prominent. The mechanical properties and surface of the blown films made under the vibration state are much better than those under the static state.


2016 ◽  
Vol 87 (7) ◽  
pp. 853-864 ◽  
Author(s):  
Arif Kurbak

In this work, based on the geometrical model given in Part I, a mechanical model is created for dry relaxed slack plain knitted technical fabrics including the three-dimensional friction effects. The equilibrium of forces and moments applied on a loop are written by using the elasticity theory of thin rods. Through this model, it is shown that a dry relaxed plain knitted fabric can be in a stable state induced by friction. The application of the model was carried out on E-glass technical fabric, which was also used in Part I as its dimensional properties were obtained through the created geometrical model. In the current part, Part II, the mechanical properties of this fabric are obtained and discussed as an exemplary application.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 595 ◽  
Author(s):  
Shuang Yu ◽  
Pibo Ma ◽  
Honglian Cong ◽  
Gaoming Jiang

In this paper, warp-knitted knitted fabrics with chitosan fibers for ventral hernia repair were fabricated with three kinds of structures. The properties of chitosan fiber, yarns, and fabrics were tested. The results demonstrated that the properties of a mesh fabricated with 1-0/1-2/2-3/2-1// structure were slightly better than those of other fabrics. The mechanical properties of the three produced fabrics were weak. However, the results demonstrated that chitosan meshes have many advantages, such as excellent hygroscopicity, and thermal and antimicrobial properties, which makes them one of the best materials for ventral hernia repair. The findings have theoretical and practical significance for the industrial uses of chitosan in ventral hernia repair.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3010 ◽  
Author(s):  
Aleksey V. Maksimkin ◽  
Fedor S. Senatov ◽  
Kirill Niaza ◽  
Tarek Dayyoub ◽  
Sergey D. Kaloshkin

A hybrid implant with a structure mimicking that of natural bone was developed. Titanium alloy Ti–6Al–4V prepared with three-dimensional (3D)-printing technology was used to simulate the cortical-bone layer. The mismatch in the mechanical properties of bone and titanium alloy was solved by creating special perforations in the titanium’s surface. Porous ultra-high molecular weight polyethylene (UHMWPE) with high osteogenous properties was used to simulate the cancellous-bone tissue. A method for creating a porous UHMWPE structure inside the titanium reinforcement is proposed. The porous UHMWPE was studied with scanning electron microscope (SEM) to confirm that the pores that formed were open, interconnected, and between 50 and 850 μm in size. Mechanical-compression tests done on the obtained UHMWPE/titanium-hybrid-implant samples showed that their mechanical properties simulated those of natural bone.


2020 ◽  
pp. 152808372094448
Author(s):  
Umit Koc ◽  
Yakup Aykut ◽  
Recep Eren

One-step and rapid preparation of natural fiber woven fabric reinforced hydrogel composites via simultaneous dissolution and crosslinking of polyvinyl alcohol (PVA) yarns in the fabric was reported. In this regards, PVA/Cotton (C), PVA/Flax (F) and PVA/Wool (W) blended woven fabrics were prepared for the manufacturing fabric reinforced hydrogel composites. The hybrid woven fabric reinforced fabrics were treated with different concentrations of borax solutions. Aqueous borax solutions were used to alter the PVA yarns in the fabric into cross-linked structure in order to enhance mechanical performance of the hydrogel composite. Morphological investigation of hydrogel composites in a dried form was carried out by scanning electron microscopy (SEM) imaging. The chemical characterization of aqueous borax treated samples was examined by fourier-transform infrared spectroscopy (FTIR) measurements. Mechanical performances of the hydrogel composites were observed by tensile measurements. Thermogravimetric analysis (TGA) was conducted to characterize thermal stability of hydrogel composites. The results revealed that natural fiber woven fabric reinforcement significantly enhanced the mechanical strength of hydrogel composites, and wool fabric reinforced composite had better mechanical performance than its cotton and flax counterparts. Due to the low mechanical properties of hydrogels in general, the prepared fabric reinforced hydrogel composites could be used in hydrogel applications where mechanical strength is critically important.


2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Su Liu ◽  
Siyao Mao ◽  
Peihua Zhang

Knitting forming is an advantage and distinguishing feature of knitting technology. The development of three-dimensional (3D) shaped technology and equipment, making knitted fabrics gradually developed from clothing domain to the industrial field. The automotive industry is one of the biggest markets for industrial textiles. Recently, most car seat covers in domestic market are made by cutting-and-sewing process, while, integrally-formed car seat covers are greatly far from commercial products. Therefore, this paper describes four knitting techniques for producing 3D shaped fabrics, and studies the knitting process of two types of 3D shaped geometries derived from car seat models. In present study, three-dimensional cutting method is used to unfold the two shapes in different ways and two knitting directions of one cutting method for individual 3D geometry are selected to knit on a Stoll computerized knitting machine. A mathematical relationship between 3D geometry and 2D unfolded shaping is established. After the shaping of each part is calculated, the program is made by the Pattern Preparation Unit and the knitting process is completed. The influence of two shaping techniques on the mechanical properties of the fully-fashioned fabric is evaluated, and it is found that compared with transferring-stitches technique, partial-knitting technique has superior mechanical properties. This study provides guides and references for the integrated automotive seat covers.


1989 ◽  
Vol 24 (4) ◽  
pp. 253-262 ◽  
Author(s):  
J-H Byun ◽  
T-W Chou

The development of innovative fibre architecture, such as two- and three-dimensional woven fabrics and knitted fabrics, as well as braided structure, provides an attractive form of reinforcement for advanced composites. These new materials require new techniques in analysis and design in order to fully utilize their unique mechanical properties. Several analytical models for predicting the thermoelastic properties of two- and three-dimensional fabric composites are reviewed in this paper. The applicability and limitation of the modelling techniques are examined. Recent advancements in the characterization of mechanical properties of three-dimensional fabric composites are also presented. Overall, three-dimensionally braided, angle interlock and orthogonal interlock fabric composites have demonstrated significant improvement in damage tolerance.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document