Effect of ultrasonic welding process parameters on seam strength of PVC-coated hybrid textiles for weather protection

2021 ◽  
pp. 152808372110575
Author(s):  
Muktar S Hussen ◽  
Yordan K Kyosev ◽  
Kathrin Pietsch ◽  
Stefan Rothe ◽  
Abera K Kabish

Using a lapped seam, PVC-coated hybrid textiles with uniform thickness were bonded by continuous ultrasonic welding and conventional joining method with the help of hot air tape welding technique for weather protection purposes. Three fundamental sewing parameters at two distinct levels and three primary welding parameters at three levels based on 6 and 12 mm welding widths were used. To consider the effect of welding and sewing parameters on seam strength, full factorial designs of experiments were designed, fabricated, and tested. The thermal behavior and possibility of chemical conversion in the welding zone under the influence of ultrasonic vibrations were examined. Variation in width of heat-affected zone of weld seam was measured. The seam strength of ultrasonic weld seam compared with that of conventional seams, and superior seam strength yielding parametric levels were assessed. The parametric influence of both joining techniques on seam quality and their tendencies in the relationship were analyzed statistically. The weld seam strength (1256.392 and 2116.93 N/50 mm) was optimized numerically and identified its trend with the variation of the weld seam. The discovered relationship led to the conclusion that the variation in the weld seam can be used to estimate the tensile strength of the weld seam through the developed effective numerical model as a non-destructive testing method, and its outcome was successful as a destructive testing method. The result shows that the ultrasonic weld seam provided a higher tensile strength ( > 75%) than the conventional seam for both evaluated welding widths and obtained statistically significant results.

2018 ◽  
Vol 9 (1) ◽  
pp. 31-34
Author(s):  
Gyula Bagyinszki ◽  
Enikő Bitay

Abstract The technological advantages of ultrasonic welding: (no requirement for filler metal; use of small electrical transient resistance contacts; ability to weld thin materials to thick materials) results in a helium-solid weld seam; the computer configuration of the welding parameters can easily be solved; clean and safe workflow (no sparks, flame or smoke); can be integrated into the production line. This article deals with some of the additional application features of this welding process.


2019 ◽  
Vol 39 (1) ◽  
pp. 41-45
Author(s):  
Mohamed Serier ◽  
Mohamed Berrahou ◽  
Affaf Tabti ◽  
Seif-E Bendaoudi

Abstract The friction stir welding process is an innovative technique for joining metals using plasticity, without presenting the fusion. It was first applied to aluminum alloys, for example copper, steel alloys, polymers and others. In this work the effects of the rotational speed, the speed of travel and the axial force of the tool were grouped in a mathematical model to quantify their influences on the weld seam. In this context and with of the experimental tests, the desired objective through this study is to describe the tensile strength of the cord resulting from this welding operation, for the qualification of this type of parts with an optimum adapted to a given application.


2021 ◽  
pp. 004051752098812
Author(s):  
Muktar Seid Hussen ◽  
Yordan Kostadinov Kyosev ◽  
Kathrin Pietsch ◽  
Stefan Rothe ◽  
Abera Kechi

In the research project presented in this paper, the effects of welding width, pressure force, power, and speed of ultrasonic welding parameters on hydrostatic pressure resistance were examined. A flexible and lightweight PVC-coated hybrid textile material with uniform thickness was used for weather protection purposes. Three main welding parameters at three different levels were selected based on the preliminary test results involving welding widths of 6 and 12 mm. A lapped type of seam was applied for ultrasonic welding and conventional joining techniques. A conventionally sewn zigzag seam was produced using three main factors at two different levels according to the application area. To avoid seam permeability, the conventional seam was sealed with tape by means of hot-air tape welding and subsequently investigated regarding its hydrostatic pressure resistance. The hydrostatic pressure resistance value of the conventional seam was then compared with ultrasonic weld seams of 6 and 12 mm welding width, and its parametric influence on the quality of the seam was analyzed. The result shows that the ultrasonic weld seam with a 12 mm welding width provided a higher hydrostatic pressure resistance than the 6 mm welding width and the conventionally sewn seam. Statistical analyses were also carried out to prove the significant effect of welding process parameters on hydrostatic pressure resistance, whereby the obtained results were statistically significant. A suitable nonlinear numerical model was also developed to predict the hydrostatic pressure resistance.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Rashiqah Rashli ◽  
Elmi Abu Bakar ◽  
Shahrul Kamaruddin

Ultrasonic welding had been widely used in various manufacturing industries such as aviation, medical, electronic device and many more. It offers a continued safe operation, faster and also low cost as it able to join weld part less than one second and also simple to maintain the tooling devices. Though ultrasonic welding brings a lot of advantages in assembly especially in thermoplastic material of manufacturing product, it also has a dominant problem to be deal with. The problem in ultrasonic welding is poor weld quality due to improper selection of ultrasonic welding parameters especially in near field configuration. Thus, an optimal combination of parameters is crucial in order to produce good quality weld assembly for this configuration. In this paper, ultrasonic welding process, ultrasonic weld joint defects and determination of optimal parameters for thermoplastic material had been discussed thoroughly. 


2014 ◽  
Vol 22 (1) ◽  
pp. 93-98
Author(s):  
Pavol Švec ◽  
Viliam Hrnčiar ◽  
Alexander Schrek

AbstractThe effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.


2020 ◽  
Vol 14 (3) ◽  
pp. 369-374
Author(s):  
Željko Bilić ◽  
Ivan Samardžić ◽  
Nedjeljko Mišina ◽  
Katarina Stoić

As already known, no proper control or process control parameter which absolutely guarantees a high level quality of joints made by electro-resistive welding has been established so far, especially when all possible parameters are taken into account during the welding process. Due to the process of butt-welding being very short-lived, ensuring quality of the joints is a difficult and under-researched problem. The application of non-destructive testing methods to the control interface joints is also not reliable. Therefore, further research in this area should concentrate on studying the influence of basic welding parameters, and calculating their direct or indirect impact can serve to achieve a highquality welded joint with for practice sufficient accuracy.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2011 ◽  
Vol 211-212 ◽  
pp. 1110-1114
Author(s):  
Xiao Yun Zhang ◽  
Yan Song Zhang

The wide use of galvanized steel in automobile manufacturing brings much challenge to the roof to body-side laser welding process. Fillet joint is an effective way to solve this problem such as pore in laser welding process. However, there is little research on this type of complicated joint process. Focused on this problem, take metallographic size of weld seam as the weld quality criteria, response surface methodology (RSM) is used to study the influence of laser welding parameters on weld seam quality. Finally, the optimum welding parameters are concluded to give technical instructions for the plant production.


Sign in / Sign up

Export Citation Format

Share Document