scholarly journals MicroRNA-663 Regulates Melanoma Progression by Inhibiting FHL3

2020 ◽  
Vol 19 ◽  
pp. 153303382095700
Author(s):  
Saijun Liu ◽  
Yunfeng Hu ◽  
Shi Wu ◽  
Yong He ◽  
Liehua Deng

microRNA-663a (miR-663a) was reported to be highly expressed in cancers. However, its roles in melanoma progression remain unclear. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to measure miR-663a expression level in melanoma cell lines and normal cells. Cell counting kit-8 assay, wound-healing assay, and transwell invasion assay were conducted to analyze biological roles of miR-663a in melanoma. Luciferase activity reporter assay was conducted to validate the connection of miR-663a and Four and a half LIM domain (FHL) protein 3 (FHL3) in melanoma. Our results showed miR-663a expression level was significantly increased in melanoma cells compared with normal cells. Silencing miR-663a expression suppresses melanoma cell proliferation, migration, and invasion in vitro. Moreover, FHL3 was validated as a functional target of miR-663a. Knockdown of FHL3 partially rescued the inhibitory effects of miR-663a inhibitor on melanoma cell behaviors. Together, our work provided evidence that miR-663a functions as an oncogenic miRNA in melanoma.

2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Xiaohui Zhang ◽  
Fangyuan Li ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

AbstractLong noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA–MB-231 and MDA–MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.


2020 ◽  
Vol 19 ◽  
pp. 153303382095700
Author(s):  
Dong-Wei Wang ◽  
Hai-Zheng Zheng ◽  
Na Cha ◽  
Xiao-Jie Zhang ◽  
Min Zheng ◽  
...  

AHNAK nucleoprotein 2 (AHNAK2) has been emerged as a crucial protein for neuroblast differentiation and cell migration, thereby involving in the development of various cancers. However, the specific molecular mechanism of AHNAK2 in lung adenocarcinoma is inconclusive. By accessing to the Oncomine dataset and GEPIA website, a higher expression level of AHNAK2 was observed in lung adenocarcinoma tissue samples. Overall survival (OS) curve plotted by Kaplan-Meier method showed that up-regulation of AHNAK2 was related with poor prognosis of lung adenocarcinoma patients. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis and western blot were conducted to examine the expression level of genes in lung adenocarcinoma cells. Through functional in vitro experiments, cell proliferation, migration and invasion were all suppressed after AHNAK2 knockdown using Cell counting kit-8 (CCK-8) assay, wound-healing and transwell analysis. Reduction of AHNAK2 decreased the apoptosis rate using flow cytometry analysis. Moreover, the key markers of MAPK pathway, p-MEK, p-ERK and p-P90RSK were decreased due to the transfection of si-AHNAK2 in A549 cells. U0126, a MEK inhibitor, showed the similar effects on MAPK-related protein levels with si-AHNAK2. To sum up, AHNAK2 is significantly increased in lung adenocarcinoma and plays a carcinogenic role by activating the MAPK signaling pathway, providing a novel insight and raising possibility for lung adenocarcinoma treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Liqian Zhang ◽  
Zunni Zhang ◽  
Liuqun Qin ◽  
Xiang Shi ◽  
Qisheng Su ◽  
...  

The purpose of this study was to explore the relationship between stromal cell-derived factor 2-like 1 (SDF2L1) and nasopharyngeal carcinoma (NPC). 12 NPC tissues and 12 chronic nasopharyngitis tissues were involved in our study. Quantitative real-time PCR (qRT-PCR) and Western Blot were utilized to detect the expression of SDF2L1. Besides, immunofluorescence analysis was utilized to determine the protein expression of 97 paraffin-embedded NPC tissues and 58 nasopharyngitis tissues. Biological functional experiment included Cell Counting Kit-8 (CCK-8) assay, cell clone formation assay, cell scratch migration assay, Transwell migration assay, and Transwell invasion assay. All data were analyzed by SPSS. Results showed that downexpression of SDF2L1 was prominently present in NPC tissues and cells. Furthermore, silencing the expression of SDF2L1 promoted NPC proliferation, migration, and invasion in vitro, while overexpression of SDF2L1 has the opposite effect. In conclusion, SDF2L1 may act as a cancer suppressor gene, play a crucial role in the occurrence and development of NPC, and be a new therapeutic target or prognostic indicator for NPC.


2019 ◽  
Vol 48 (3) ◽  
pp. 030006051988373 ◽  
Author(s):  
Hailin Li ◽  
Guiling Zhu ◽  
Yanwei Xing ◽  
Yuekun Zhu ◽  
Daxun Piao

Objective MicroRNAs (miRNAs) are reported to have crucial roles in human cancers; however, their role in colorectal cancer (CRC) remains largely unknown. Methods In this study, we analyzed the expression of miR-4324 in CRC cell lines using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We also examined miR-4324 expression in CRC tumor tissues using a miRNA expression dataset obtained from the Gene Expression Omnibus. We validated the connection between miR-4324 and homeobox B2 (HOXB2) using a luciferase activity reporter assay and western blotting. The effects of miR-4324 and HOXB2 on CRC cell malignant behaviors in vitro were further investigated. Results miR-4324 expression was significantly decreased in both CRC tumor tissues and cell lines. Overexpression of miR-4324 suppressed CRC cell proliferation, migration, and invasion. In contrast, overexpression of HOXB2 promoted CRC malignant cell behaviors. Furthermore, we validated HOXB2 as a direct target of miR-4324. Conclusions miR-4324 expression was decreased in CRC. miR-4324 regulates CRC cell proliferation, migration, and invasion by targeting HOXB2.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Huiya Liu ◽  
Lin Ma ◽  
Ling Wang ◽  
Yizuo Yang

Abstract Background Colon cancer is a heterogeneous tumor and a leading cause of cancer-related mortality. MicroRNA (miRNA) has been proposed as the biomarker in cancers. The aim of this study was to investigate the clinical significance and potential functional role of miR-937 in colon cancer. Methods In the present study, reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was conducted to examine the expression levels of miR-937 in colon cancer tissues and cell lines. Kaplan-Meier curve and Cox regression analyses were used to determine the prognostic impact of miR-937 on survival. Cell Counting Kit-8 and Transwell assays were performed to examine cell proliferation, migration, and invasion, respectively. Results miR-937 was significantly upregulated in colon cancer tissues and cell lines. Clinical analysis results showed that miR-937 expression was associated with lymph node metastasis and TNM stage. Patients with high miR-937 expression predicted a shorter overall survival rate. Functionally, overexpression of miR-937 promoted cell proliferation, migration, and invasion, while inhibition of miR-937 inhibited these cellular behaviors in vitro. Conclusions These results suggested that miR-937 may act as a prognostic biomarker and a potential target for therapeutic strategy, as well as promote proliferation, migration, and invasion of colon cancer.


2020 ◽  
Author(s):  
Xiaohui Zhang ◽  
Fangyuan Li ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

Abstract Background: LncRNAs have been proved to be involved in the proliferation, apoptosis, invasion, migration and other pathological processes of triple negative breast cancer (TNBC). And the expression level of LncRNA AFAP1-AS1 in TNBC was found to be significantly higher than that in other subtypes and normal tissue samples, but the specific mechanism of LncRNA AFAP1-AS1 affecting the occurrence and development of TNBC needs to be revealed.Methods: Cell Counting Kit-8 assays, colony formation assays, wound-healing migration, transwell invasion assays and nude mouse xenograft assays were used to confirm the role of LncRNA AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. Bioinformatics analyses, quantitative polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase assays were performed to confirm the interaction between between LncRNA AFAP1-AS1, miR-2110 and Sp1.Results: In the present study, the silencing of AFAP1-AS1 and Sp1 or the upregulation of miR-2110 would result in the suppression of proliferation, migration and invasion of MDA-MB-231 and MDA-MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-luciferase reporter assay highlighted that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reverse by the joint transfection of miR-2110 inhibitor.Conclusions: Our findings demonstrated that AFAP1-AS1 acts as a miR-2110 sponge in TNBC cells, resulting in the regulation of Sp1 expression. And the AFAP1-AS1/miR-2110/Sp1 axis modulated the proliferation, migration and invasion of breast cancer cells and affected the tumorigenesis in mice.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuanlin Yu ◽  
Xiaopeng Chen ◽  
Weidong Zhang ◽  
Jun Liu

Background. Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, but its molecular mechanism is unclear. Abnormal expression of centromere protein U (CENPU) is closely related to diverse human cancers. The purpose of this article was to evaluate the function and potential mechanisms of CENPU in HCC development. Methods. We performed bioinformatics analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), and Kaplan-Meier plotter databases to investigate the clinical significance and prognostic value of CENPU in HCC. Western blotting and immunohistochemical staining were used to measure protein expression, while reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was used to determine mRNA expression. Cell Counting Kit8 (CCK-8) and colony formation assays were conducted to examine cell proliferation. Transwell and wound healing assays were used to assess cell migration and invasion. Gene set enrichment analysis (GSEA) was used to explore the potential signaling pathways of CENPU involved in HCC. Results. High expression of CENPU in HCC was predicted by public database analysis and indicated a poor prognosis. CENPU expression was significantly higher in HCC tissues and cells than in normal tissues and cell. In vitro, CENPU promoted the proliferation, migration, and invasion of HCC cells. GSEA results indicated that CENPU was linked to the Notch signaling pathway, and our research supported this prediction. Conclusion. CENPU promotes the malignant biological process of HCC and may be a promising target for HCC treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huixian Zhang ◽  
Hao Zhang ◽  
Xingya Li ◽  
Siyuan Huang ◽  
Qianqian Guo ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to exert crucial functions in regulating the progression of human cancers. However, the function and mechanism of long intergenic non-protein coding RNA 01089 (LINC01089) in non-small cell lung cancer (NSCLC) have not been revealed. Methods The expression level of LINC01089, microRNA (miRNA, miR)-152-3p and phosphatase and tensin homolog deleted onc hromosome ten (PTEN) mRNA was detected by quantitative real-time PCR (qRT-PCR). After gain-of-function and loss-of-function models were established with NSCLC cell lines, the proliferation, migration and invasion of NSCLC cells were detected by cell counting kit-8 (CCK-8) assay, scratch healing assay, Transwell assay, respectively. Dual luciferase reporter assay was employed to validate the binding relationship between miR-152-3p and LINC01089 or the 3’UTR of PTEN. Western blot was used to detect PTEN expression in NSCLC cells after LINC01089 and miR-152-3p were selectively modulated. Results LINC01089 was down-regulated in NSCLC tissues and cells. Functional experiments showed that knockdown of LINC01089 could promote the proliferation, migration and invasion of NSCLC cells, while over-expression of LINC01089 had the opposite effects. miR-152-3p was identified as a functional target for LIN01089, and miR-152-3p could reverse the function of LINC01089. Additionally, LINC01089 could up-regulate the expression level of PTEN via repressing miR-152-3p. Conclusions Down-regulation of LINC01089 promoted the progression of NSCLC through regulating miR-152-3p/PTEN axis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document