scholarly journals LINC01089 functions as a ceRNA for miR-152-3p to inhibit non‐small lung cancer progression through regulating PTEN

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huixian Zhang ◽  
Hao Zhang ◽  
Xingya Li ◽  
Siyuan Huang ◽  
Qianqian Guo ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to exert crucial functions in regulating the progression of human cancers. However, the function and mechanism of long intergenic non-protein coding RNA 01089 (LINC01089) in non-small cell lung cancer (NSCLC) have not been revealed. Methods The expression level of LINC01089, microRNA (miRNA, miR)-152-3p and phosphatase and tensin homolog deleted onc hromosome ten (PTEN) mRNA was detected by quantitative real-time PCR (qRT-PCR). After gain-of-function and loss-of-function models were established with NSCLC cell lines, the proliferation, migration and invasion of NSCLC cells were detected by cell counting kit-8 (CCK-8) assay, scratch healing assay, Transwell assay, respectively. Dual luciferase reporter assay was employed to validate the binding relationship between miR-152-3p and LINC01089 or the 3’UTR of PTEN. Western blot was used to detect PTEN expression in NSCLC cells after LINC01089 and miR-152-3p were selectively modulated. Results LINC01089 was down-regulated in NSCLC tissues and cells. Functional experiments showed that knockdown of LINC01089 could promote the proliferation, migration and invasion of NSCLC cells, while over-expression of LINC01089 had the opposite effects. miR-152-3p was identified as a functional target for LIN01089, and miR-152-3p could reverse the function of LINC01089. Additionally, LINC01089 could up-regulate the expression level of PTEN via repressing miR-152-3p. Conclusions Down-regulation of LINC01089 promoted the progression of NSCLC through regulating miR-152-3p/PTEN axis.

2019 ◽  
Vol 9 (12) ◽  
pp. 1644-1652
Author(s):  
Xueqin Pan ◽  
Dongchun Ma

Lung cancer is one of the most common malignant cancers with a poor survival rate and high mortality worldwide. MiRNAs have been evaluated as crucial regulators of human gene expression, and exerted vital role involved in cancer progression. MiR-302a-3p was aberrant expressed in cancers that include pancreatic cancer and hepatocellular cancer, but its biological role in lung cancer remains elusive. This study aimed to discover the role and potential mechanism of miR-302a-3p in lung cancer. The lung cancer cell line with the highest expression of miR-302a-3p was selected, which was then subjected to transfection of miR-302a-3p mimic. Quantitative RT-PCR was performed to detect gene expression. Western blot assay was performed to determine corresponding genes that related to cell proliferation, apoptosis and invasion. Cell Counting Kit (CCK)-8 assay, flow cytometry analysis, wound healing and Transwell assay were performed to detect cell proliferation, apoptosis, migration and invasion, respectively. Luciferase reporter assay was carried out to identify the targeting relationship of miR-302-3p and HOXA-AS2. MiR-302a-3p was downregulated in lung cancer cells, and overexpression of miR-302a-3p significantly suppressed cell proliferation, migration, invasion and promoted cell apoptosis. HOXA-AS2 was a direct target of miR-302a-3p and was regulated by miR-302a-3p. HOXA-AS2 was upregulated in lung cancer cells. Upregulated HOXA-AS2 could reverse the effect that overexpression of miR-302a-3p caused on cell proliferation, apoptosis, migration and invasion. Overall, miR-302a-3p exhibited anti-oncogenic activity by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis in lung cancer by targeting HOXA-AS2, disclosing the role and regulatory mechanism of miR-302a-3p, which provided a promising therapeutic target for the clinical application of lung cancer treatment.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Author(s):  
Jianjie Zhao ◽  
Xueqin Wang ◽  
Juan Jiang ◽  
Yao Ding ◽  
qinan wu

Abstract Background: CircRNAs feature prominently in breast cancer (BC) progression. This study was intended to investigate the role of hsa_circ_0000520 in BC progression.Methods: After the sample collection, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for quantifying the expressions of circ_0000520, miR-542-3p, and sphingosine-1-phosphate receptor 1 (S1PR1) mRNA. 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays were used for measuring cell proliferation. Transwell assays were employed to detect cell migration and invasion. Western blotting was utilized for analyzing S1PR1 protein expression. Dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to delve into the targeting relationship between circ_0000520 and miR-542-3p.Results: Circ_0000520 expression was markedly elevated in BC cell lines and tissues, and knockdown of circ_0000520 could inhibit BC cell multiplication, migration, and invasion. Circ_0000520 could target miR-542-3p to negatively regulate S1PR1 expression. S1PR1 overexpression plasmid could counteract the inhibitory effects of circ_0000520 knockdown on BC cell proliferation, migration, and invasion.Conclusion: Circ_0000520, as a cancer-promoting circRNA, participates in BC progression by regulating miR-542-3p/S1PR1 axis.


2020 ◽  
pp. jim-2020-001537
Author(s):  
Shanshan Wu ◽  
Shimei Liu ◽  
Huaihua Song ◽  
Jiayu Xia

Circular RNA (circRNA) is an endogenous RNA molecule with a stable closed-loop structure. The circular RNA HIPK3 (circHIPK3) is highly expressed in hepatocellular carcinoma and facilitates tumor growth. However, its role in cervical cancer (CC) and its regulatory mechanisms are not well-studied. This study aimed for investigating the function of circHIPK3 on proliferation and metastasis of CC cells. In this study, quantitative real-time PCR assay was adopted to delve into the circHIPK3 expression in CC cell lines. Cell counting kit-8 and colony formation assays were used to evaluate the influence of overexpression and knockdown of circHIPK3 on CC cell proliferation. Dual-luciferase reporter assay was employed to probe into the binding of miR-485-3p to circHIPK3 and miR-485-3p to the 3’ untranslated region (UTR) of fibroblast growth factor 2 (FGF2), respectively. FGF2 protein expression was detected by western blot analysis. This study confirmed that circHIPK3 was highly expressed in CC tissues. Overexpressed circHIPK3 could remarkably expedite the proliferation, migration and invasion of SiHa cells, and knocking down circHIPK3 could significantly impede the proliferation, migration and invasion of HeLa cells. MiR-485-3p can directly bind to circHIPK3 and the 3’UTR of FGF2. Overexpression of circHIPK3 triggered the upregulation of FGF2 expression while knockdown of circHIPK3 reduced FGF2 expression in CC cells, and the transfection of miR-485-3p mimics reversed the upregulation of FGF2 expression and enhanced malignant phenotypes in CC cells with overexpressed circHIPK3.


Author(s):  
Shijun Yu ◽  
Li Li ◽  
Hui Cai ◽  
Bin He ◽  
Yong Gao ◽  
...  

Abstract Background Accumulating evidence has highlighted the importance of negative elongation factor complex member E (NELFE) in tumorigenesis. However, the relationship between NELFE and gastric cancer (GC) remains unclear. This study aimed to explore the expression pattern and specific function of NELFE in GC. Methods NELFE expression was evaluated by immunohistochemistry and qRT-PCR in GC tissues, respectively. Cell proliferation, migration and invasion were measured by CCK-8, colony formation, transwell assays, and nude mice model. Bioinformatics analysis was performed to search potential target genes of NELFE, and a Cignal Finder 10-Pathway Reporter Array was used to explore potential signaling pathways regulated by NELFE. Dual-luciferase reporter assays, qRT-PCR and western blotting were conducted to verify their regulatory relationship. The expression correlations among NELFE, β-catenin and CSNK2B were further explored by immunohistochemistry on consecutive resections. Results NELFE was significantly overexpressed in GC tissues both in protein and mRNA level and negatively correlated with the prognosis of GC patients. Gain- and loss-of-function experiments showed that NELFE potentiated GC cell proliferation and metastasis in vitro and in vivo. CSNK2B was identified as a downstream effector of NELFE. Wnt/β-catenin signaling may mediate the regulation of CSNK2B by NELFE. In addition, NELFE, β-catenin and CSNK2B were all remarkably upregulated in tumor tissues compared with adjacent normal tissues, and their expression levels in GC were positively correlated with each other. Conclusion Our findings reveal a new NELFE-Wnt/β-catenin-CSNK2B axis to promote GC progression and provide new candidate targets against this disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Zhang ◽  
Xian Zhang ◽  
Shasha Yang ◽  
Yanqiu Bao ◽  
Dongyuan Xu ◽  
...  

Abstract Background The expression of forkhead box protein H1 (FOXH1) is frequently upregulated in various cancers. However, the molecular mechanisms underlying the association between FOXH1 expression and lung cancer progression still remain poorly understood. Thus, the main objective of this study is to explore the role of FOXH1 in lung cancer. Methods The Cancer Genome Atlas dataset was used to investigate FOXH1 expression in lung cancer tissues, and the Kaplan–Meier plotter dataset was used to determine the role of FOXH1 in patient prognosis. A549 and PC9 cells were transfected with short hairpin RNA targeting FOXH1 mRNA. The Cell Counting Kit-8, colony formation, soft agar, wound healing, transwell invasion and flow cytometry assays were performed to evaluate proliferation, migration and invasion of lung cancer cells. Tumorigenicity was examined in a BALB/c nude mice model. Western blot analysis was performed to assess the molecular mechanisms, and β-catenin activity was measured by a luciferase reporter system assay. Results Higher expression level of FOXH1 was observed in tumor tissue than in normal tissue, and this was associated with poor overall survival. Knockdown of FOXH1 significantly inhibited lung cancer cell proliferation, migration, invasion, and cycle. In addition, the mouse xenograft model showed that knockdown of FOXH1 suppressed tumor growth in vivo. Further experiments revealed that FOXH1 depletion inhibited the epithelial-mesenchymal transition of lung cancer cells by downregulating the expression of mesenchymal markers (Snail, Slug, matrix metalloproteinase-2, N-cadherin, and Vimentin) and upregulating the expression of an epithelial marker (E-cadherin). Moreover, knockdown of FOXH1 significantly downregulated the activity of β-catenin and its downstream targets, p-GSK-3β and cyclin D1. Conclusion FOXH1 exerts oncogenic functions in lung cancer through regulation of the Wnt/β-catenin signaling pathway. FOXH1 might be a potential therapeutic target for patients with certain types of lung cancer.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110132
Author(s):  
Hao Chen ◽  
Ye Zhang ◽  
Kankui Wu ◽  
Xiaoyong Qiu

Objective To study the relationship between the circular RNA vesicle-associated membrane protein-associated protein A (circVAPA) and the pathogenesis of oral squamous cell carcinoma. Methods The expression of circVAPA was detected by RT-qPCR. In vitro loss-of-function experiments were performed in Cal-27 cells. The malignant phenotype of cells was evaluated by cell counting kit-8, clone formation and transwell assays. Luciferase reporter assays were used to assess the circVAPA/miR-132/homeobox A (HOXA) regulatory axis. Results circVAPA expression was significantly increased in oral cancer tissues and cells. The overall survival and progression-free survival of patients with oral cancer who exhibited high circVAPA expression were significantly shorter compared with those with low expression. circVAPA expression was closely related to tumor size, TNM stage and distant metastasis. circVAPA knockdown reduced the proliferation, invasion and migration of Cal-27 cells. MiR-132 was identified as a target of circVAPA in Cal-27 cells. Cotransfection with si-circVAPA and miR-132 inhibitor reversed the inhibitory effect of circVAPA knockdown on cell malignant phenotypes. HOXA7 was further identified as a downstream target of miR-132. Conclusion circVAPA is highly expressed in oral cancer, and its abnormal expression might affect the proliferation, invasion and migration of oral cancer cells by modulating the miR-132/HOXA7 signaling axis.


Author(s):  
Lina Bu ◽  
Yingxuan Tian ◽  
Hongqing Wen ◽  
Weihong Jia ◽  
Shuanying Yang

Abstract miR-195-5p has been widely explored in various cancers and is considered as a tumor-suppressive microRNA. However, its roles in human lung cancer pathogenesis are not fully elucidated. In this study, we aimed to explore how miR-195-5p is involved in malignant behaviors of lung adenocarcinoma (LUAD) cells. miR-195-5p expression was examined in the tumor tissues of patients with LUAD and human LUAD cell lines including A549 and PC-9. Thioredoxin reductase 2 (TrxR2) was predicted to be an mRNA target of miR-195-5p using online tools and validated by the Dual-Luciferase Reporter Assay. Lentivirus infection was used for gene overexpression, while gene knockdown was achieved by RNA interference. Cell proliferation was determined by Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine methods, and cell migration and invasion were assayed with transwell experiments. Cell apoptosis was determined by annexin V staining-based flow cytometry. The antitumor effects of miR-195-5p were also evaluated in nude mice xenografted with A549 cells. We found that miR-195-5p was lowly expressed in human LUAD cells, and its overexpression markedly suppressed cell proliferation, migration, and invasion and increased the apoptosis of LUAD cells in vitro. TrxR2 knockdown phenocopied the tumor-suppressive effects of miR-195-5p overexpression, while simultaneous TrxR2 overexpression remarkably reversed the effects of miR-195-5p overexpression on malignant behaviors of A549 and PC-9 cells. Additionally, miR-195-5p overexpression inhibited the growth of xenografted A549 tumor in nude mice. Our work verified that miR-195-5p exerts tumor-suppressive functions in LUAD cells through targeting TrxR2 and suggested that the miR-195-5p/TrxR2 axis is a potential biomarker for LUAD therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Run Liu ◽  
Xianwu Yang

Abstract Background This study aimed to explore the role and underlying molecular mechanisms of long non-coding RNA (lncRNA) LINC00342 in gastric cancer (GC). Methods The expression of LINC00342 in GC tissues was evaluated by Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Silencing of LINC00342 was conducted to investigate the effect of LINC00342 in vitro and in vivo. The underlying molecular mechanisms of LINC00342 were determined by dual luciferase reporter assay, Western blotting analysis and rescue experiments. Biological functions of LINC00342 were evaluated by cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and Transwell assays. In addition, a tumor model was used to verify the effect of LINC00342 in tumorigenesis in vivo. Results LINC00342 was significantly upregulated in GC tissues and cell lines. Silencing of LINC00342 efficiently inhibited proliferation, migration and invasion of AGS cells in vitro, and also suppressed the tumorigenesis of GC in vivo. Functional experiments showed that LINC00342 regulated the expression of canopy fibroblast growth factor signaling regulator 2 (CNPY2) by competitively sponging miR-545-5p. Rescue experiments showed that inhibition of miR-545-5p and overexpression of CNPY2 significantly reversed cell phenotypes caused by silencing of LINC00342. Conclusion LINC00342 plays a potential oncogenic role in GC by targeting the miR545-5p/CNPY2 axis, and might act as a novel therapeutic target for GC.


Sign in / Sign up

Export Citation Format

Share Document