Cementum and Periodontal Wound Healing and Regeneration

2002 ◽  
Vol 13 (6) ◽  
pp. 474-484 ◽  
Author(s):  
Wojciech J. Grzesik ◽  
A.S. Narayanan

The extracellular matrix (ECM) of cementum resembles other mineralized tissues in composition; however, its physiology is unique, and it contains molecules that have not been detected in other tissues. Cementum components influence the activities of periodontal cells, and they manifest selectivity toward some periodontal cell types over others. In light of emerging evidence that the ECM determines how cells respond to environmental stimuli, we hypothesize that the local environment of the cementum matrix plays a pivotal role in maintaining the homeostasis of cementum under healthy conditions. The structural integrity and biochemical composition of the cementum matrix are severely compromised in periodontal disease, and the provisional matrix generated during periodontal healing is different from that of cementum. We propose that, for new cementum and attachment formation during periodontal regeneration, the local environment must be conducive for the recruitment and function of cementum-forming cells, and that the wound matrix is favorable for repair rather than regeneration. How cementum components may regulate and participate in cementum regeneration, possible new regenerative therapies using these principles, and models of cementoblastic cells are discussed.

1994 ◽  
Vol 127 (3) ◽  
pp. 707-723 ◽  
Author(s):  
K A Beck ◽  
J A Buchanan ◽  
V Malhotra ◽  
W J Nelson

Spectrin is a major component of a membrane-associated cytoskeleton involved in the maintenance of membrane structural integrity and the generation of functionally distinct membrane protein domains. Here, we show that a homolog of erythrocyte beta-spectrin (beta I sigma*) co-localizes with markers of the Golgi complex in a variety of cell types, and that microinjected beta-spectrin codistributes with elements of the Golgi complex. Significantly, we show a dynamic relationship between beta-spectrin and the structural and functional organization of the Golgi complex. Disruption of both Golgi structure and function, either in mitotic cells or following addition of brefeldin A, is accompanied by loss of beta-spectrin from Golgi membranes and dispersal in the cytoplasm. In contrast, perturbation of Golgi structure without a loss of function, by the addition of nocodazole, results in retention of beta-spectrin with the dispersed Golgi elements. These results indicate that the association of beta-spectrin with Golgi membranes is coupled to Golgi organization and function.


2018 ◽  
Author(s):  
Chundi Xu ◽  
Emma Theisen ◽  
Elijah Rumbaut ◽  
Bryan Shum ◽  
Jing Peng ◽  
...  

SUMMARYThe ability of neurons to distinguish appropriate from inappropriate synaptic partners in their local environment is fundamental to the proper assembly and function of neural circuits. How synaptic partner selection is regulated is a longstanding question in Neurobiology. A prevailing hypothesis is that appropriate partners express complementary molecules that match them together and promote synaptogenesis. Dpr and DIP IgSF proteins bind heterophilically and are expressed in a complementary manner between synaptic partners in the Drosophila visual system. Here, we show that in the lamina, DIP mis-expression is sufficient to promote synapse formation with Dpr-expressing neurons, and that DIP proteins are not necessary for synaptogenesis but rather function to prevent ectopic synapse formation. These findings indicate that Dpr-DIP interactions regulate synaptic specificity by biasing synapse formation towards specific cell-types. We propose that synaptogenesis occurs independent of synaptic partner choice, and that precise synaptic connectivity is established by limiting promiscuous synapse formation.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


Author(s):  
Leslie Baumann ◽  
Eric F Bernstein ◽  
Anthony S Weiss ◽  
Damien Bates ◽  
Shannon Humphrey ◽  
...  

Abstract Elastin is the main component of elastic fibers, which provide stretch, recoil, and elasticity to the skin. Normal levels of elastic fiber production, organization, and integration with other cutaneous extracellular matrix proteins, proteoglycans, and glycosaminoglycans are integral to maintaining healthy skin structure, function, and youthful appearance. Although elastin has very low turnover, its production decreases after individuals reach maturity and it is susceptible to damage from many factors. With advancing age and exposure to environmental insults, elastic fibers degrade. This degradation contributes to the loss of the skin’s structural integrity; combined with subcutaneous fat loss, this results in looser, sagging skin, causing undesirable changes in appearance. The most dramatic changes occur in chronically sun-exposed skin, which displays sharply altered amounts and arrangements of cutaneous elastic fibers, decreased fine elastic fibers in the superficial dermis connecting to the epidermis, and replacement of the normal collagen-rich superficial dermis with abnormal clumps of solar elastosis material. Disruption of elastic fiber networks also leads to undesirable characteristics in wound healing, and the worsening structure and appearance of scars and stretch marks. Identifying ways to replenish elastin and elastic fibers should improve the skin’s appearance, texture, resiliency, and wound-healing capabilities. However, few therapies are capable of repairing elastic fibers or substantially reorganizing the elastin/microfibril network. This review describes the clinical relevance of elastin in the context of the structure and function of healthy and aging skin, wound healing, and scars and introduces new approaches being developed to target elastin production and elastic fiber formation.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huban Thomas Rajarethnem ◽  
Kumar Megur Ramakrishna Bhat ◽  
Malsawmzuali Jc ◽  
Siva Kumar Gopalkrishnan ◽  
Ramesh Babu Mugundhu Gopalram ◽  
...  

Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant (p<0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons (p<0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.


1995 ◽  
Vol 41 (2) ◽  
pp. 136-144 ◽  
Author(s):  
J. A. Mackintosh ◽  
J. E. Trimble ◽  
A. J. Beattie ◽  
D. A. Veal ◽  
M. K. Jones ◽  
...  

Secretions from exocrine metapleural glands of Myrmecia gulosa (Australian bull ant) exhibit broad-spectrum antimicrobial activity. Treatment of the yeast Candida albicans with metapleural secretion resulted in the rapid and total leakage of K+ions from cells within 10 min. Ultrastructural analysis of the bacteria Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa, and cells and protoplasts of Candida albicans demonstrated gross damage of the cell membrane and aggregation of the cytoplasmic matrix of treated cells. Degradation of membrane-bound organelles was also observed in Candida albicans. The antimicrobially active components of metapleural secretions were nonpolar and interacted with the phospholipid bilayer, causing damage to the structural integrity of liposomes and the release of carboxyfluorescein. The data suggest that the antimicrobial agents in metapleural secretion act primarily by disrupting the structure and function of the phospholipid bilayer of the cytoplasmic membrane.Key words: ant metapleural secretion, antimicrobial, Candida albicans, cytoplasmic membrane.


Sign in / Sign up

Export Citation Format

Share Document