scholarly journals The Influences of Hydrophilic Finishing of PET Fibers on the Properties of Hydroentangled Nonwoven Fabrics

2010 ◽  
Vol 5 (4) ◽  
pp. 155892501000500 ◽  
Author(s):  
Wang Hong ◽  
Pang Lianshun ◽  
Jin Xiangyu ◽  
Yin Baopu ◽  
Wu Haibo

Common polyester fibers are hydrophobic in nature. Thus it is hard to process the fibers in the hydroentangled nonwoven process and the resultant nonwoven fabric is hydrophobic as well. In this paper, two kinds of polyester fibers treated with different hydrophilic finishing agents and one common polyester fiber were formed into nonwoven fabrics by using hydroentanglement process. The influences of the hydrophilic and friction properties of the PET fibers on the properties of hydroentangled nonwoven fabrics were studied.

2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Hong Wang ◽  
Jingjing Zhu ◽  
Xiangyu Jin ◽  
Haibo Wu

Spunlaced nonwoven fabrics have been widely used recently, but fundamental research on the spunlaced nonwoven process is relatively weak. It is inexplicit until now how fibers are entangled with each other during the hydroentangling process. In this paper, a pull-out experiment designed to study the entanglement properties of spunlaced nonwoven fabrics using common and hydrophilic PET fibers as objects is described. It was found that the broken fiber content can be used to represent the entanglement intensity of the spunlaced nonwoven fabrics. In addition, a formula was set up to calculate the tensile strength of the spunlaced nonwoven fabric based on its pull-out behavior.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Viju Subramoniapillai ◽  
G. Thilagavathi

Purpose The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several researchers have explored the potential use of recycled polyester fibers in developing various technical textile products. This study aims to develop needle-punched nonwoven fabrics from recycled polyester fibers and investigate its suitability in oil spill cleanup process. Design/methodology/approach According to Box and Behnken factorial design, 15 different needle-punched nonwoven fabrics from recycled polyester fibers were prepared by changing the parameters, namely, needle punch density, needle penetration depth and fabric areal weight. Several featured parameters such as oil sorption, oil retention, oil sorption kinetics, wettability and reusability performance were systematically elucidated. Findings The maximum oil sorption of recycled nonwoven polyester is found to be 24.85 g/g and 20.58 g/g for crude oil and vegetable oil, respectively. The oil retention is about 93%–96% in case of crude oil, whereas 87%–91% in case of vegetable oil. Recycled polyester nonwoven possesses good hydrophobic–oleophilic properties with static contact angle of 138° against water, whereas 0° against crude oil and vegetable oil. The reusability test results indicate that recycled polyester nonwoven fabric can be used several times because of its reusability features. Originality/value There is no detailed study on the oil sorption features of needle-punched nonwoven fabrics developed from recycled polyester fibers. This study is expected to help in developing fabrics for oil spill cleanups.


2018 ◽  
Vol 940 ◽  
pp. 8-14
Author(s):  
Kazuto Tanaka ◽  
Ryota Kawasaki ◽  
Tsutao Katayama ◽  
Yusuke Morita

Insufficient endothelialization of stent grafts tends to cause a problem of thrombosis formation. Because the structure of nanofibers, generally defined as fibers with a diameter below 1 μm, resembles the structure of an extracellular matrix, nanofibers are applied to scaffolds for regenerative medicine. Using nanofibers as the covering material of the stent graft can be expected to solve the problem of the stent graft. Previous studies have shown that a porous scaffold offers better surfaces to anchor and culture endothelial cells than a nonporous scaffold. Therefore, fibers with nanoorder dimples are expected to promote endothelialization. As a method of forming the dimple shape on the surface of the PET fiber, there is a method utilizing a difference in the volatilization rate of the solvent in the high humidity environment in the electrospinning method. For practical application of the stent graft to artificial blood vessels, the mechanical properties of the dimpled PET fiber should be clarified. In this study, the mechanical properties of single nanofibers and nonwoven fabrics of PET fibers with dimples on their surface were evaluated by tensile test. By forming the dimple shape on the fiber surface, the tensile strength of single PET fibers with dimples was 90 % lower than that of single PET fibers with a smooth surface. In the fabrication process of nonwoven fabric, the addition of EG delayed the volatilization of the PET solution, and the fibers adhered to each other. The bonding between the fibers contributed to the tensile strength of the nonwoven fabric.


2008 ◽  
Vol 55-57 ◽  
pp. 405-408 ◽  
Author(s):  
Ching Wen Lou ◽  
Ching Wen Lin ◽  
Chia Chang Lin ◽  
S.J. Li ◽  
I.J. Tsai ◽  
...  

As available energy sources have grown increasingly scarce, people have started paying attention to their energy consumption. Although many methods for power generation are being actively investigated, efficient methods for solving energy problems must be based on reducing energy consumption. Thermal insulation can decrease heat energy loss and conserve energy waste, especially in the construction, transportation and industrial fields. In this study, polyester (PET) hollow fibers were blended with various ratios of low-melting-point PET fibers (10%, 20%, 30%, 40% and 50%). The fibers were blended using opening, carding, laying and needle punching (150 needles/cm2, 225 needles/cm2 and 300 needles/cm2) to prepare PET nonwoven fabrics. The PET nonwoven fabrics were thermally plate pressed (TPP) and air-through bonding (ATB). Thermal conductivity, physical properties and air permeability were investigated to identify the influence of manufacturing parameters on the PET nonwoven fabrics. The experimental results show that needle punching density, TPP and ATB would influence the thermal conductivity of PET nonwoven fabric, because the structure of PET nonwoven fabric was changed. The optimal parameters of PET nonwoven fabric clipped with an aluminum foil was used to evaluate the influence of aluminum foil on thermal conductivity. The PET nonwoven composite in this study can be used in industrial thermal insulation applications.


2013 ◽  
Vol 457-458 ◽  
pp. 61-64
Author(s):  
Ching Wen Lou ◽  
Wen Hao Hsing ◽  
Chien Teng Hsieh ◽  
Jia Horng Lin

Geotextiles made of nonwoven fabrics can be used in different fields, such as groynes, dams, seawalls, revetments, dunes, and hillsides, and the structures of nonwoven fabrics can be changed accordingly. This study explores the influence of different content of Kevlar fibers on the mechanical and physical properties of Kevlar/Polyester (PET) complex nonwoven fabrics. As specified in a nonwoven fabric manufacturing process Kevlar fibers and PET fibers are blended with various ratios to form Kevlar/PET complex nonwoven fabrics, which are then tested for tear strength, air permeability, and water permeability. The experiment results show that increasing Kevlar fibers reduces the tear strength, air permeability, and water permeability.


2013 ◽  
Vol 365-366 ◽  
pp. 1217-1220 ◽  
Author(s):  
Chen Hung Huang ◽  
Yu Chun Chuang

This study aims to investigate the optimal value of design parameters for the sound-absorbing nonwoven composite board. The number of laminated layers and thickness of polyester fiber are viewed as the design parameters for fabricating the nonwoven composite board. The 2D, 7D and 12D polyester fibers are individually mixed with 4D low-melting point polyester fiber to produce 2D polyester nonwoven fabric (2D-PETF), 7D polyester nonwoven fabric (7D-PETF) and 12D polyester nonwoven fabric (12D-PETF) respectively. The developed nonwoven fabrics are then used to fabricate 2D-PET, 7D-PET and 12D-PET nonwoven composite boards through the multiple needle-punching and thermal bonding techniques. The sound absorption performance of each PET composite board is carefully examined. The experimental results reveal that the 7D-PET composite board with 10 laminated layers has the optimal sound absorption performance.


2013 ◽  
Vol 457-458 ◽  
pp. 49-52 ◽  
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jan Yi Lin ◽  
Mei Chen Lin ◽  
Ching Wen Lou

Soilless culture mediums are able to increase the greening areas and decrease the amount of carbon dioxide (CO2), which reduces the global temperature and the green house effect. The aim of this study is to explore effects of the content of low melting point polyester (LPET) fibers on the physical properties of the polyester (PET)/LPET nonwoven fabrics. PET fibers and LPET fibers are blended with various ratios, and made into PET/LPET nonwoven fabrics with a nonwoven process. The air permeability, water content, water retention, and pH value tests are performed on the resulting fabrics. The experiment results show that increasing LPET fiber content increases the air permeability and water content, but decreases the water retention. The LPET content does not have an influence on the pH value.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


2021 ◽  
Vol 2021 ◽  
pp. 137-141
Author(s):  
V. Sülar ◽  
B. Keçeci

In this research, biodegradation behaviour of nonwoven fabrics suitable for wet wipes having different fibre types such as regenerated cellulose (viscose and Tencel), polyethylene terephthalate (PET) and their blends were investigated. Each nonwoven fabric was buried in soil and test samples were controlled in regular periods. Visual appearance was reported and examined by photographs and microscopic views. According to the changes in visual appearance and weight loss, biodegradation was examined in a systematic way. It has been observed that regenerated cellulose nonwoven fabrics and the PET nonwoven fabrics show big difference under the same degradation conditions. PET fibre content delays biodegradation in the soil and degradation behaviour is similar the content of PET fibre in fabric structure. The higher PET, lower degradation, and the higher cellulosic fibre, the higher degradation was determined for nonwoven fabrics suitable for wet wipes.


2019 ◽  
Vol 827 ◽  
pp. 190-195
Author(s):  
Kazuto Tanaka ◽  
Yuta Ishii ◽  
Tsutao Katayama

Nanofibers have high cell affinity due to their fine structure and surface roughness, and are expected to be used as biomaterials. In particular, magnetic nanofibers containing magnetic particles are expected to be used for magnetically induced drug delivery systems and hyperthermia. However, due to the aggregation of the magnetic particles contained in the nanofibers, there is a problem that the aggregation location becomes a starting point of fracture and causes a decrease in tensile strength. In this study, to improve the dispersibility of magnetic particles in Magnetite/PLA nanofiber nonwoven fabrics for suppressing the decrease in tensile strength, magnetite is subjected to surface treatment with oleic acid or stearic acid and ultrasonic agitation. Magnetite/PLA nanofiber nonwoven fabric was prepared by the electrospinning method, and dispersion of magnetite in PLA nanofiber nonwoven fabric and tensile strength were evaluated. Magnetite dispersion was improved by the surface treatment and increasing the ultrasonic agitation time. In particular, by performing the stearic acid treatment and prolonging the ultrasonic agitation time, the magnetite dispersion tended to be improved. This treated Magnetite/PLA nanofiber nonwoven fabric showed higher tensile strength.


Sign in / Sign up

Export Citation Format

Share Document