scholarly journals Fines erosion: Turbophoresis can be harmful

2017 ◽  
Vol 9 (2) ◽  
pp. 86-102 ◽  
Author(s):  
Joan AR Boulanger ◽  
Chong Y Wong ◽  
MS Amir Zamberi ◽  
SN Amira Shaffee ◽  
Zurita Johar ◽  
...  

Enabling turbulence dispersion in a computational fluid dynamics simulation of a developing liquid–solid pipe flow leads to a focus of low-Stokes number particles around the pipe axis. This phenomenon is found to concentrate their impacts on a centrally located target surface such that a local erosion spot develops. This result is counter-intuitive as low-Stokes particles are deemed to follow the carrier average streamlines going around the body, which diminishes their probability of impact. This is nevertheless a fact reported experimentally too. Analysis of the simulations reveals that turbulence tends to drive preferentially tiny particles from areas of high to low agitation. This phenomenon is sometimes named as turbophoresis. Long straight piping systems are typical candidates for turbulent pipe flows hosting an annular zone of turbulence that tends to disperse and concentrate fines towards the axis. At the approach of a body, like a cross-flow cylinder, particles may be somewhat re-scattered away by the carrier dragging them around. As such, this turbulence dispersion effect on fines concerns various industrial solid transport systems. Fine impacts concentration is likely to create unexpected, local wear zone.

Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.


1972 ◽  
Vol 14 (7) ◽  
pp. 43-52 ◽  
Author(s):  
Th. Y. Wu ◽  
J. N. Newman

This paper attempts to extend some recent theoretical calculations on the unsteady flow generated by body movements of a slender ‘flat’ fish by further including the effect of finite body thickness in the consideration for various configurations of side and caudal fins as major appendages. Based on the slender-body approximation, the cross-flow is determined for different longitudinal body sections which are characterized by a variety of cross-sectional shapes and flow conditions (such as having smooth or fin-edged body contours, with or without vortex sheets alongside the body section). The effect of body thickness is found to arise primarily from its interaction with the vortex sheet already existing in the cross-flow. New results for the transverse hydro-dynamic force acting on the body are obtained, and their physical significances are discussed.


Author(s):  
Sebastian Hernandez ◽  
Sofiane Achiche ◽  
Daniel Spooner ◽  
Aurelian Vadean ◽  
Maxime Raison

Abstract Over the last decades, the use of multibody dynamics in biomechanics research has grown considerably and holds significant promises for the health and biomedical industries. Nowadays, it allows estimating internal data of the body that would be impractical or impossible to obtain experimentally, e.g. individual muscle forces. Also, multibody dynamics simulation allows one to constrain virtually any apparatus to the musculoskeletal system, helping to understand and improve the patient’s dynamic interactions with the device. The modeling and validation of human multibody models remain a tedious task to achieve for the research community and can vary significantly depending on the applications. Despite the advantages offered by the multibody modeling of the human body, its introduction in the biomedical engineering curriculum is not widespread. The present paper aims to evaluate the feasibility and the interest of introducing multibody modeling into multidisciplinary, real-world projects using 3D printed prototypes to add an experimental understanding of the difficulties and validation of the human body modeling. The proposed methodology is based on a literature review of the multibody dynamics teaching methods used in mechanical engineering, followed by a first pilot project and feedback from students and professors of the community through interviews. Finally, a project is proposed, using physical prototyping to support the learning.


Author(s):  
Kazuhiro Tsuboi

We investigate the behaviour of flow field around an obstacle placed in uniform particle flow based on two-fluid Saffman equation. Particle density in the vicinity of the front stagnation point is, in particular, the primary interest in the present study. In the case of small Stokes number, in which particle impingement does not occur, there exists the exact solution of the flow field of particle phase is obtained. Perturbed solution is also obtained in the reciprocal of Stokes number when Stokes number is large enough. Comparison between numerical results and these solutions shows good agreement and the peak of particle density appears near the threshold of partide impingement to the body surface.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
P. A. Gregory ◽  
P. N. Joubert ◽  
M. S. Chong ◽  
A. Ooi

The ability of eddy-viscosity models to simulate the turbulent wake produced by cross-flow separation over a curved body of revolution is assessed. The results obtained using the standard k−ω model show excessive levels of turbulent kinetic energy k in the vicinity of the stagnation point at the nose of the body. Additionally, high levels of k are observed throughout the wake. Enforcing laminar flow upstream of the nose (which replicates the experimental apparatus more accurately) gives more accurate estimates of k throughout the flowfield. A stress limiter in the form of Durbin’s T-limit modification for eddy-viscosity models is implemented for the k−ω model, and its effect on the computed surface pressures, skin friction, and surface flow features is assessed. Additionally, the effect of the T-limit modification on both the mean flow and the turbulent flow quantities within the wake is also examined. The use of the T-limit modification gives significant improvements in predicted levels of turbulent kinetic energy and Reynolds stresses within the wake. However, predicted values of skin friction in regions of attached flow become up to 50% greater than the experimental values when the T-limit is used. This is due to higher values of near-wall turbulence being created with the T-limit.


2019 ◽  
Vol 29 (8) ◽  
pp. 2728-2753
Author(s):  
Guohua Zhang ◽  
Xueting Liu ◽  
Bengt Ake Sundén ◽  
Gongnan Xie

Purpose This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4). Design/methodology/approach Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model. Findings It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D = 10. Research limitations/implications These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired. Originality/value As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.


Author(s):  
Ting Wang ◽  
Mingjie Lin ◽  
Ronald S. Bunker

Experimental studies on heat transfer and flow structure in confined impingement jets were performed. The objective of this study was to investigate the detailed heat transfer coefficient distribution on the jet impingement target surface and flow structure in the confined cavity. The distribution of heat transfer coefficients on the target surface was obtained by employing the transient liquid crystal method coupled with a 3-D inverse transient conduction scheme under Reynolds number ranging from 1039 to 5175. The results show that the average heat transfer coefficients increased linearly with the Reynolds number as Nu = 0.00304 Pr0.42Re. The effects of cross flow on heat transfer were investigated. The flow structure were analyzed to gain insight into convective heat transfer behavior.


Author(s):  
Baiheng Wu ◽  
Jorlyn Le Garrec ◽  
Dixia Fan ◽  
Michael S. Triantafyllou

Currents and waves cause flow-structure interaction problems in systems installed in the ocean. Particularly for bluff bodies, vortices form in the body wake, which can cause strong structural vibrations (Vortex-Induced Vibrations, VIV). The magnitude and frequency content of VIV is determined by the shape, material properties, and size of the bluff body, and the nature and velocity of the oncoming flow. Riser systems are extensively used in the ocean to drill for oil wells, or produce oil and gas from the bottom of the ocean. Risers often consist of a central pipe, surrounded by several smaller cylinders, including the kill and choke lines. We present a series of experiments involving forced in-line and cross flow motions of short rigid sections of a riser containing 6 symmetrically arranged kill and choke lines. The experiments were carried out at the MIT Towing Tank. We present a systematic database of the hydrodynamic coefficients, consisting of the forces in phase with velocity and the added mass coefficients that are also suitable to be used with semi-empirical VIV predicting codes.


Sign in / Sign up

Export Citation Format

Share Document