scholarly journals Plants as a Still Unexploited Source of New Drugs

2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Kurt Hostettmann ◽  
Andrew Marston

Higher plants are a source of thousands of natural products, with an almost infinite variety of different structural variations. These molecules often have specific functions and many of them have biological activities which can be of use to humans. They may provide lead compounds for the development of new drugs or they may be indispensable tools in biomedical research.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 92
Author(s):  
Yue Yang ◽  
Ping-Ya He ◽  
Yi Zhang ◽  
Ning Li

There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Liliana V. Muschietti ◽  
Jerónimo L. Ulloa

Chagas’ disease and Human African Trypanosomiasis are parasitic diseases that remain major health problems, mainly among the poorest and the most marginalized communities from Latin America and Africa. The scarcity of effective chemotherapy, due to the low investment in the research and development (R&D) of new drugs, together with a high incidence of side effects, and the emergence of drug resistance phenomena emphasize the urgent need for new prophylactic and therapeutic agents. Over the ages, humans have employed natural products to treat a wide spectrum of diseases. Recently, the pharmaceutical industry has focused on plant research and a large body of evidence has been collected to demonstrate the immense potential of medicinal plants as a source of bioactive compounds and lead molecules. In the field of parasitic diseases, drug development from plants has been successful for the sesquiterpene lactone (STL) artemisinin, which is employed as an antimalarial agent. STLs are a large group of naturally occurring terpenoids derived from plants that mostly belong to the Asteraceae family which exhibit a variety of skeletal arrangements and are the largest and most diverse category of natural products with an α-methylene-λ-lactone motif. STLs display a broad spectrum of biological activities such as antitumor, cytotoxic, antibacterial, anthelmintic, uterus contracting, antimalarial, neurotoxic, antiprotozoal and allergic (contact dermatitis) activities. In this context, the purpose of the present review is to provide an overview of the trypanocidal activity reported for STLs against Trypanosoma cruzi and T. brucei rhodesiense over the period 1993–2015.


2018 ◽  
Vol 25 (10) ◽  
pp. 1194-1240 ◽  
Author(s):  
Sara Vitalini ◽  
Serhat S. Cicek ◽  
Sebastian Granica ◽  
Christian Zidorn

Background: Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Objective: Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. Method: A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Results: Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Conclusion: Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities.


2020 ◽  
Vol 21 (5) ◽  
pp. 354-363
Author(s):  
Anand Thirupathi ◽  
Chandra M. Shanmugavadivelu ◽  
Sampathkumar Natarajan

Background: Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. Methods: In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. Results: Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. Conclusion: In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.


2010 ◽  
Vol 63 (6) ◽  
pp. 855 ◽  
Author(s):  
Ian D. Rae

Hoffmann-La Roche supported the work of University of Queensland zoologist Robert Endean in the late 1960s, but the company’s deepening interest in the prospect of ‘drugs from the sea’ led them to establish the Roche Research Institute of Marine Pharmacology (RRIMP) at Dee Why, New South Wales. It was headed by Dr Joe Baker, an Australian organic chemist who had researched marine natural products. RRIMP took advice from several influential advisers, and Baker recruited chemists, pharmacologists, microbiologists, and marine biologists. Despite the conjecture, raised in some quarters, that RRIMP was established to mute the Australian government criticism of the pricing of Roche’s most famous product, Valium, I believe that the research venture was a genuine attempt to find lead compounds in organisms from Australian waters with a view to the development of new drugs. Changes in the research directions taken by Hoffmann-La Roche resulted in the closure of RRIMP in mid-1981, before any such success could be claimed for the Dee Why operation. RRIMP scientists, an elite but suddenly redundant group, secured positions in other Australian laboratories.


Planta Medica ◽  
2021 ◽  
Author(s):  
Gabriel Davi Marena ◽  
Luiza Girotto ◽  
Luiz Leonardo Saldanha ◽  
Matheus Aparecido dos Santos Ramos ◽  
Rone Aparecido De Grandis ◽  
...  

Abstract Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


Author(s):  
Yongzhen Guo ◽  
Xuben Hou ◽  
Hao Fang

: Benzimidazole is an aromatic bicyclic heterocycle that is regarded as a valuable privileged scaffold in medicinal chemistry. Many marketed drugs and natural products containing benzimidazole scaffolds exert great influence in fighting various diseases, such as hypertension, peptic ulcers, parasitic infections, and cancer. In this review, we introduce the pharmacological applications of some marketed drugs and lead compounds with a focus on anticancer agents, reporting the corresponding data to show the biological activities at their targets. The publications in this review encompass those from 2014 to 2019.


2021 ◽  
Vol 22 (8) ◽  
pp. 4138
Author(s):  
Alessio Ottaviani ◽  
Federico Iacovelli ◽  
Paola Fiorani ◽  
Alessandro Desideri

Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on.


2020 ◽  
Vol 19 (31) ◽  
pp. 2868-2918 ◽  
Author(s):  
Chengfang Yang ◽  
Rui Qian ◽  
Yao Xu ◽  
Junxi Yi ◽  
Yiwen Gu ◽  
...  

: Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.


Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, have stood out as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention along years. They are widespread in all continents, and several structurally unique compounds have been identified from species of this genus. Terpenes, mainly sesterterpenoids, represent the great majority of secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have shown a variety of biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial and anti-inflammatory activities, have been isolated and structurally characterized. This work brings an overview of Phorbas secondary metabolites reported since the first study published in 1993 until 2020, and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document