scholarly journals Natural Products Targeting the Mitochondria in Cancers

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 92
Author(s):  
Yue Yang ◽  
Ping-Ya He ◽  
Yi Zhang ◽  
Ning Li

There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.

2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Liliana V. Muschietti ◽  
Jerónimo L. Ulloa

Chagas’ disease and Human African Trypanosomiasis are parasitic diseases that remain major health problems, mainly among the poorest and the most marginalized communities from Latin America and Africa. The scarcity of effective chemotherapy, due to the low investment in the research and development (R&D) of new drugs, together with a high incidence of side effects, and the emergence of drug resistance phenomena emphasize the urgent need for new prophylactic and therapeutic agents. Over the ages, humans have employed natural products to treat a wide spectrum of diseases. Recently, the pharmaceutical industry has focused on plant research and a large body of evidence has been collected to demonstrate the immense potential of medicinal plants as a source of bioactive compounds and lead molecules. In the field of parasitic diseases, drug development from plants has been successful for the sesquiterpene lactone (STL) artemisinin, which is employed as an antimalarial agent. STLs are a large group of naturally occurring terpenoids derived from plants that mostly belong to the Asteraceae family which exhibit a variety of skeletal arrangements and are the largest and most diverse category of natural products with an α-methylene-λ-lactone motif. STLs display a broad spectrum of biological activities such as antitumor, cytotoxic, antibacterial, anthelmintic, uterus contracting, antimalarial, neurotoxic, antiprotozoal and allergic (contact dermatitis) activities. In this context, the purpose of the present review is to provide an overview of the trypanocidal activity reported for STLs against Trypanosoma cruzi and T. brucei rhodesiense over the period 1993–2015.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Xie ◽  
Yi Chen ◽  
Huidan Tan ◽  
Bo Liu ◽  
Ling-Li Zheng ◽  
...  

Natural products are well-characterized to have pharmacological or biological activities that can be of therapeutic benefits for cancer therapy, which also provide an important source of inspiration for discovery of potential novel small-molecule drugs. In the past three decades, accumulating evidence has revealed that natural products can modulate a series of key autophagic signaling pathways and display therapeutic effects in different types of human cancers. In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53. Taken together, these inspiring findings would shed light on exploiting more natural compounds as candidate small-molecule drugs, by targeting the crucial pathways of autophagy for the future cancer therapy.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 491 ◽  
Author(s):  
Shaden A. M. Khalifa ◽  
Nizar Elias ◽  
Mohamed A. Farag ◽  
Lei Chen ◽  
Aamer Saeed ◽  
...  

Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.


2020 ◽  
Vol 24 (5) ◽  
pp. 516-535 ◽  
Author(s):  
Fatemeh Mohajer ◽  
Ghodsi Mohammadi Ziarani ◽  
Razieh Moradi

Natural products have received much attention due to their importance and application. Indolizidine, categorized as an alkaloid, has several biological activities. The synthesis of natural compounds such as indolizidines has attracted much attention from many chemists’ and researchers’ perspectives. There are many areas to be explored in this subject; that is why synthesizing indolizidine 209I and (±)-indolizidine 209B as natural compounds have received much consideration. This review discloses the procedures and methodology to provide (±)-indolizidine 209I and 209B due to the importance of indolizidines.


2020 ◽  
Vol 21 (5) ◽  
pp. 354-363
Author(s):  
Anand Thirupathi ◽  
Chandra M. Shanmugavadivelu ◽  
Sampathkumar Natarajan

Background: Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. Methods: In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. Results: Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. Conclusion: In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 27
Author(s):  
Fengjie Li ◽  
Michelle Kelly ◽  
Deniz Tasdemir

Marine sponges are exceptionally prolific sources of natural products for the discovery and development of new drugs. Until now, sponges have contributed around 30% of all natural metabolites isolated from the marine environment. Family Latrunculiidae Topsent, 1922 (class Demospongiae Sollas, 1885, order Poecilosclerida Topsent, 1928) is a small sponge family comprising seven genera. Latrunculid sponges are recognized as the major reservoirs of diverse types of pyrroloiminoquinone-type alkaloids, with a myriad of biological activities, in particular, cytotoxicity, fuelling their exploration for anticancer drug discovery. Almost 100 pyrroloiminoquinone alkaloids and their structurally related compounds have been reported from the family Latrunculiidae. The systematics of latrunculid sponges has had a complex history, however it is now well understood. The pyrroloiminoquinone alkaloids have provided important chemotaxonomic characters for this sponge family. Latrunculid sponges have been reported to contain other types of metabolites, such as peptides (callipeltins), norditerpenes and norsesterpenes (trunculins) and macrolides (latrunculins), however, the sponges containing latrunculins and trunculins have been transferred to other sponge families. This review highlights a comprehensive literature survey spanning from the first chemical investigation of a New Zealand Latrunculia sp. in 1986 until August 2020, focusing on the chemical diversity and biological activities of secondary metabolites reported from the family Latrunculiidae. The biosynthetic (microbial) origin and the taxonomic significance of pyrroloiminoquinone related alkaloids are also discussed.


Planta Medica ◽  
2021 ◽  
Author(s):  
Gabriel Davi Marena ◽  
Luiza Girotto ◽  
Luiz Leonardo Saldanha ◽  
Matheus Aparecido dos Santos Ramos ◽  
Rone Aparecido De Grandis ◽  
...  

Abstract Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


2020 ◽  
Vol 10 (11) ◽  
pp. 4025 ◽  
Author(s):  
Ana M. L. Seca ◽  
Laila Moujir

Nature represents an amazing source of inspiration since it produces a great diversity of natural compounds selected by evolution, which exhibit multiple biological activities and applications. A large and very active research field is dedicated to identifying biosynthesized compounds, to improve/develop new methodologies to produce/reuse natural compounds and to assess their potential for pharmaceutical, cosmetic and food industries, among others, and also to understand their mechanism of action. Here, the main results presented in each work are highlighted. The applications suggested are mostly related to pharmacological uses and involve mainly pure natural compounds and essential oils. These works are significant contributions and reinforce the dynamic field of natural products applications.


2021 ◽  
Vol 14 (1) ◽  
pp. 363-366
Author(s):  
Yuchen Xiao ◽  
Jianping Yong ◽  
Yang Yang ◽  
Canzhong Lu

Cancer is a major public health problem worldwide, and it is one of the top three major diseases in terms of mortality. Some small molecular synthesized drugs have been used clinically. However, much side-effects were also appeared during treatment of the cancer patients with the synthesized anticancer drugs in clinical. Some Chinese Traditional Plant Medicines have ever been used for treatment of cancer with the low side-effects. Thus, it is essential to find anticancer drugs or drug candidates from Chinese Traditional Plant Medicines. Podocarpus nagicontains different kinds of biological components together with a wide spectrum of biological activities, and it has ever been used in the folk of Yao Nationality for treatment different diseases. It is essential to study this folk plant medicine to discover new drugs or drug candidates. In this work, we obtained different polar extractions and evaluated their in vitro anticancer activity.


Sign in / Sign up

Export Citation Format

Share Document