scholarly journals The Promotive Effect of the Active Ingredients of Atractylodes macrocephala on Intestinal Epithelial Repair Through Activating Ca2+ Pathway

2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110403
Author(s):  
Yan Ren ◽  
Wenwen Jiang ◽  
Chunli Luo ◽  
Xiaohan Zhang ◽  
Mingjin Huang

Atractylodes macrocephala ( AM) is a famous traditional Chinese medicine for intestinal epithelial restitution through activating Ca2+ channels. However, the roles of specific AM compositions in intestinal epithelial restitution are sparse. Therefore, this study aimed to compare the concrete effects of the 4 active ingredients (atractylon, β-eudesmol, atractylenolide II, atractylenolide III) of AM and their combination on intestinal epithelial repair and the Ca2+ pathway in intestinal epithelial cell (IEC-6) cells. First, the best combination of the 4 ingredients with an optimal mixing ratio of atractylon: β-eudesmol: atractylenolide II: atractylenolide III = 1:2:2:2 was demonstrated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide orthogonal experiment. Subsequently, enzyme-linked immunosorbent assay was used to measure anti-inflammatory cytokine levels, the migratory ability was evaluated by cell scratch experiments, cell cycle analysis and [Ca2+]cyt concentration in cells were detected by flow cytometry, and the expression of the Ca2+ pathway-related genes was detected by immunofluorescence staining, quantitative polymerase chain reaction and whole blood assays. Our result showed that atractylon, β-Eudesmol, atractylenolide II, and atractylenolide III showed different abilities to promote the IEC-6 cells proliferation, migration, and the expression of anti-inflammatory cytokines interleukin (IL)-2, IL-10, and ornithine decarboxylase, as well as the intracellular [Ca2+]cyt concentration through stromal interaction molecule 1 transposition to activate Ca2+ pathway. Thereinto, atractylenolide III was the main active ingredient of AM for pro-proliferation and anti-inflammation, and the combination of 4 AM ingredients performed better beneficial effects on IEC-6 cells. Therefore, our study suggested that atractylenolide III was the active ingredient of AM for intestinal epithelial repair through activating the Ca2+ pathway, and the 4 ingredients of AM have a synergy in intestinal epithelial repair.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liyan Mei ◽  
Meihong He ◽  
Chaoying Zhang ◽  
Jifei Miao ◽  
Quan Wen ◽  
...  

AbstractSepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yue Geng ◽  
Yeting Chen ◽  
Wei Sun ◽  
Yingmin Gu ◽  
Yongjie Zhang ◽  
...  

The beneficial effects of electroacupuncture (EA) at Shuigou (GV26) and Neiguan (PC6) on poststroke rehabilitation are critically related to the activation of the delta-opioid receptor (DOR). The underlying anti-inflammatory mechanisms in DOR activation and EA-mediated neuroprotection in cerebral ischemia/reperfusion (I/R) injury were investigated in the current study. Cell proliferation and apoptosis were detected by morphological changes, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) release, and TUNEL staining. The mRNA levels were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR), and the protein expression was measured by western blot or enzyme-linked immunosorbent assay (ELISA) in vitro. Infarct volume was examined by cresyl violet (CV) staining, neurologic recovery was assessed by neurological deficit scores, and pro- and anti-inflammatory cytokines were determined by immunofluorescence in vivo. DOR activation greatly ameliorated morphological injury, reduced LDH leakage and apoptosis, and increased cell viability. It reversed the oxygen-glucose deprivation/reoxygenation- (OGD/R-) induced downregulation of DOR mRNA and protein, as well as BDNF protein. DOR activation also reduced proinflammatory cytokine gene expression, including TNF-α, IL-1β, and IL-6, and at the same time, increased anti-inflammatory cytokines IL-4 and IL-10 in OGD/R challenged PC12 cells. EA significantly reduced middle cerebral artery occlusion/reperfusion- (MCAO/R-) induced infarct volume and attenuated neurologic deficit scores. It markedly increased the expression of IL-10 and decreased IL-1β, while sham EA did not have any protective effect in MCAO/R-injured rats. DOR activation plays an important role in neuroprotection against OGD/R injury by inhibiting inflammation via the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) pathway. The neuroprotective efficacy of EA at Shuigou (GV26) and Neiguan (PC6) on cerebral I/R injury may be also related to the inhibition of inflammatory response through the DOR-BDNF/TrkB pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Neng Tine Kartinah ◽  
Fadilah Fadilah ◽  
Ermita Ilyas Ibrahim ◽  
Yuliana Suryati

Background. Glucagon-like peptide 1 (GLP-1) hormone is an incretin hormone that is secreted in the ileum and plays a role in the pancreas to increase insulin secretion, stimulate proliferation, and prevent pancreatic β-cell apoptosis. Currently, diabetes mellitus (DM) treatment based on GLP-1 work is being developed, for instance, from herbal plants such as Hibiscus sabdariffa Linn (H. sabdariffa). Therefore, this study aims to determine the potential of H. sabdariffa in GLP-1 secretion in the ileum and its action in pancreatic β-cells. In addition, this study also aims to determine the active ingredients of H. sabdariffa (Hib) that interact with sodium-glucose cotransporter-1 (SGLT-1) so that it can increase GLP-1 secretion in the ileum and interact with GLP-1 receptors (GLP-1R) in the pancreas. Method. This experimental study used 24 experimental animals of Sprague–Dawley type (aged 8–10 weeks, weight 200–250 g) that were divided into 6 groups, namely, (i) normal (C), (ii) normal-Hib 200 (C-Hib200), (iii) normal-Hib 500 (C-Hib500), (iv) DM (C-DM), (v) DM-Hib200, and (vi) DM-Hib500. H. sabdariffa extract was given orally once a day for 5 weeks. Testing of GLP-1 levels in the ileum and pancreatic tissue was performed by enzyme-linked immunosorbent assay. The prediction of the interaction mechanism of the active substance H. sabdariffa against GLP-1 was done using molecular docking. Results. There was a decrease in GLP-1 levels in the ileum of DM rats (p<0.05). However, DM rats administered H. sabdariffa 500 mg/kg BW had GLP-1 levels that were the same as in normal rats (p>0.05). This is due to active ingredients such as leucosin, which binds to SGLT-1. Administration of 500 mg/kg BW H. sabdariffa in DM rats resulted in GLP-1 levels in the pancreas that were the same as in normal rats (p>0.05). In addition, the active ingredient of H. sabdariffa, delphinidin, binds to GLPR in the pancreas. Conclusion. The active ingredient of H. sabdariffa can increase GLP-1 secretion in the ileum and can interact with G protein-linked receptors in the pancreas.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 548 ◽  
Author(s):  
Fabio Mastrogiovanni ◽  
Anindya Mukhopadhya ◽  
Nicola Lacetera ◽  
Marion Ryan ◽  
Annalisa Romani ◽  
...  

The aim of this study was to determine the anti-inflammatory potential of pomegranate peel extracts (PPE) prepared from waste material of pomegranate juice production both in vitro on Caco-2 cells and ex vivo using porcine colonic tissue explants. Caco-2 cells were stimulated in vitro by TNF and colonic tissue explants were stimulated ex vivo with lipopolysaccharide (LPS). Both tissues were co-treated with PPE at 0, 1.0, 2.5, 5.0, 10 and 25 μg/mL. The secretion of CXCL8 in the supernatant of both experiments was determined by enzyme linked immunosorbent assay (ELISA) and the relative expression of inflammatory cytokines were evaluated in the colonic tissue by quantitative polymerase chain reaction (QPCR). The 2.5 to 25 μg/mL of PPE suppressed CXCL8 (p < 0.001) in the Caco-2 cells, whereas CXCL8 production was suppressed by only 5 and 25 μg/mL (p < 0.01) of PPE in the colonic explants. The 5 μg/mL of PPE also suppressed the expression of IL1A (p < 0.05), IL6 (p < 0.01) and CXCL8 (p < 0.05) in LPS challenged colonic tissues compared to controls. In conclusion, the 5 μg/mL of PPE consistently elicits strong anti-inflammatory activity. These results support the potential of bioactive compounds from the waste peel of pomegranate in terms of their anti-inflammatory activity in cells and tissues of the gastrointestinal tract.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document