scholarly journals Imaging of Folate Receptor Expressing Macrophages in the Rat Groove Model of Osteoarthritis: Using a New DOTA-Folate Conjugate

Cartilage ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Huub M. de Visser ◽  
Nicoline M. Korthagen ◽  
Cristina Müller ◽  
Ruud M. Ramakers ◽  
Gerard C. Krijger ◽  
...  

Objective To evaluate the presence and localization of folate receptor expressing macrophages in the rat groove model of osteoarthritis and determine the suitability of a new folate conjugate with albumin-binding entity (cm09) for in vivo SPECT (single-photon emission computed tomography) analysis. Design In male Wistar rats, local cartilage damage was induced in addition to a standard ( n = 10) or high-fat diet ( n = 6). After 12 weeks, 111In labeled folate conjugates were administered, and SPECT/CT (computed tomography) imaging was performed after 24 hours. Subsequently, osteoarthritis severity and folate receptor expression were assessed using (immuno)-histological sections. Results In vivo SPECT/CT imaging of the new folate conjugate (cm09) was as useful as a folate conjugate without albumin-binding entity in the groove model of osteoarthritis with less renal accumulation. Induction of cartilage damage on a standard diet resulted in no effect on the amount of folate receptor expressing macrophages compared with the contralateral sham operated joints. In contrast, inducing cartilage damage in the high-fat diet group resulted in 28.4% increase of folate receptor expression as compared with the nondamaged control joints. Folate receptor expressing cells were predominantly present in the synovial lining and in subchondral bone as confirmed by immunohistochemistry. Conclusions Folate receptor expression, and thus macrophage activation, can clearly be demonstrated in vivo, in small animal models of osteoarthritis using the new 111In-folate conjugate with specific binding to the folate receptor. Increased macrophage activity only plays a role in the groove model of osteoarthritis when applied in a high-fat diet induced dysmetabolic condition, which is in line with the higher inflammatory state of that specific model.

2004 ◽  
Vol 22 (17) ◽  
pp. 3593-3607 ◽  
Author(s):  
Bieke Van Den Bossche ◽  
Christophe Van de Wiele

To date, our understanding of the role of receptors and their cognate ligands in cancer is being successfully translated into the design and development of an arsenal of new, less toxic, and more specific anticancer drugs. Because most of these novel drugs are cytostatic, objective response as measured by morphologic imaging modalities (eg, computed tomography or magnetic resonance imaging) cannot be used as a surrogate marker for drug development or for clinical decision making. Positron emission tomography (PET) can be used to image and quantify the in vivo distribution of positron-emitting radioisotopes such as oxygen-15, carbon-11, and fluorine-18 that can be substituted or added into biologically relevant and specific receptor radioligands. Similarly, single-photon emission computed tomography (SPECT) can be used to image and quantify the in vivo distribution of receptor targeting compounds labeled with indium-111, technetium-99m, and iodine-123. By virtue of their whole-body imaging capacity and the absence of errors of sampling and tissue manipulation as well as preparation, both techniques have the potential to address locoregional receptor status noninvasively and repetitively. This article reviews available data on the in vivo evaluation of receptor systems by means of PET or SPECT for identifying and monitoring patients with sufficient receptor overexpression for tailored therapeutic interventions, and also for depicting tumor tissue and determining the currently largely unknown heterogeneity in receptor expression among different tumor lesions within and between patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4291
Author(s):  
Santina Chiechio ◽  
Magda Zammataro ◽  
Massimo Barresi ◽  
Margherita Amenta ◽  
Gabriele Ballistreri ◽  
...  

Citrus fruits are a rich source of high-value bioactive compounds and their consumption has been associated with beneficial effects on human health. Red (blood) oranges (Citrus sinensis L. Osbeck) are particularly rich in anthocyanins (95% of which are represented by cyanidin-3-glucoside and cyanidin-3-6″-malonyl-glucoside), flavanones (hesperidin, narirutin, and didymin), and hydroxycinnamic acids (caffeic acid, coumaric acid, sinapic, and ferulic acid). Lemon fruit (Citrus limon) is also rich in flavanones (eriocitrin, hesperidin, and diosmin) and other polyphenols. All of these compounds are believed to play a very important role as dietary antioxidants due to their ability to scavenge free radicals. A standardized powder extract, red orange and lemon extract (RLE), was obtained by properly mixing anthocyanins and other polyphenols recovered from red orange processing waste with eriocitrin and other flavanones recovered from lemon peel by a patented extraction process. RLE was used for in vivo assays aimed at testing a potential beneficial effect on glucose and lipid metabolism. In vivo experiments performed on male CD1 mice fed with a high-fat diet showed that an 8-week treatment with RLE was able to induce a significant reduction in glucose, cholesterol and triglycerides levels in the blood, with positive effects on regulation of hyperglycemia and lipid metabolism, thus suggesting a potential use of this new phytoextract for nutraceutical purposes.


2021 ◽  
Vol 29 ◽  
pp. S31
Author(s):  
K.H. Collins ◽  
D.J. Schwartz ◽  
K.L. Lenz ◽  
C.A. Harris ◽  
F. Guilak

2017 ◽  
Vol 43 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Yan Bai ◽  
Zhenli Su ◽  
Hanqi Sun ◽  
Wei Zhao ◽  
Xue Chen ◽  
...  

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jaime Gonzalez ◽  
Wendy Donoso ◽  
Natalia Díaz ◽  
María Eliana Albornoz ◽  
Ricardo Huilcaman ◽  
...  

Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/−mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/−mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cellsin vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.


2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Jessica Braun ◽  
Allen Teng ◽  
Mia Geromella ◽  
Chantal Ryan ◽  
Rachel Fenech ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document