Direct observation of microscopic plastic deformation of stainless steel using lattice drawn by focused ion beam of Ga+

2005 ◽  
Vol 21 (3) ◽  
pp. 274-280
Author(s):  
M. Akiyama ◽  
Y. Neishi ◽  
A. Taniyama ◽  
K. Terada
Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 529 ◽  
Author(s):  
Federica Zanotto ◽  
Vincenzo Grassi ◽  
Andrea Balbo ◽  
Fabrizio Zucchi ◽  
Cecilia Monticelli

This paper reports the effects of thermal aging between 650 and 850 °C on the localized corrosion behavior of lean duplex stainless steel (LDSS 2404). Critical pitting temperature (CPT) and double loop electrochemical potentiokinetic reactivation (DL-EPR) tests were performed. The localization of pitting attack and intergranular corrosion (IGC) attack after DL-EPR was investigated by optical (OM) and scanning electron microscopy (SEM) and by focused ion beam (FIB) coupled to SEM. Thermal aging caused the precipitation of mainly chromium nitrides at grain boundaries. Aging at 650 °C or short aging times (5 min) at 750 °C caused nitride precipitation mainly at α/α grain boundaries as a result of fast diffusion of chromium in this phase. Aging at 850 °C or aging times from 10 to 60 min at 750 °C also allowed the precipitation at the α/γ interface. Nitrides at γ/γ grain boundaries were observed rarely and only after long aging times (60 min) at 850 °C. Electrochemical tests showed that in as-received samples, pitting attack only affected the α phase. Conversely, in aged samples, pitting and IGC attack were detected close to nitrides in correspondence of α/α and α/γ grain boundaries depending on aging temperatures and times.


1999 ◽  
Vol 14 (6) ◽  
pp. 2196-2203 ◽  
Author(s):  
T. Y. Tsui ◽  
Joost Vlassak ◽  
William D. Nix

The plastic deformation behavior of Knoop indentations made in a soft, porous titanium/aluminum multilayered thin film on a hard silicon substrate is studied through use of the focused-ion-beam milling and imaging technique. Pileup is observed for indentations with depths larger than 30% of the total film thickness. Analysis of the indentation cross sections shows that plastic deformation around the indentation is partly accommodated by the closing of the pores within the multilayers. This densification process reduces the amount of pileup formed below that predicted by finite element simulations. Experimental results show that the pileup is formed by an increase of the titanium layer thickness near the edges of the indentation. The thickness increase is largest near the film/substrate interface and decreases toward the surface of the multilayered film. The amount of normal compression near the center of the indenter is characterized, and it is demonstrated that the deformation becomes more nonuniform with increasing indentation depth.


2017 ◽  
Vol 23 (6) ◽  
pp. 1076-1081 ◽  
Author(s):  
Ádám István Hegyi ◽  
Péter Dusán Ispánovity ◽  
Michal Knapek ◽  
Dániel Tüzes ◽  
Kristián Máthis ◽  
...  

AbstractPlastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress–strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1492
Author(s):  
Zoran Cenev ◽  
Malte Bartenwerfer ◽  
Waldemar Klauser ◽  
Ville Jokinen ◽  
Sergej Fatikow ◽  
...  

The focused ion beam (FIB) has proven to be an extremely powerful tool for the nanometer-scale machining and patterning of nanostructures. In this work, we experimentally study the behavior of AISI 420 martensitic stainless steel when bombarded by Ga+ ions in a FIB system. The results show the formation of nanometer sized spiky structures. Utilizing the nanospiking effect, we fabricated a single-tip needle with a measured 15.15 nanometer curvature radius and a microneedle with a nanometer sized spiky surface. The nanospikes can be made straight or angled, depending on the incident angle between the sample and the beam. We also show that the nanospiking effect is present in ferritic AISI 430 stainless steel. The weak occurrence of the nanospiking effect in between nano-rough regions (nano-cliffs) was also witnessed for austenitic AISI 316 and martensitic AISI 431 stainless steel samples.


2013 ◽  
Vol 13 (8) ◽  
pp. 5283-5290 ◽  
Author(s):  
Feroze Nazneen ◽  
Michael Schmidt ◽  
Eve McLoughlin ◽  
Nikolay Petkov ◽  
Gregoire Herzog ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Lucia Rozumová ◽  
Lukáš Košek ◽  
Jan Vít ◽  
Anna Hojná ◽  
Patricie Halodová

Abstract Development of liquid lead cooled nuclear systems requires consideration of compatibility issues with the construction materials. In order to understand the corrosion or passivation behavior of the 316 L austenitic stainless steel, the steel specimens were exposed for 1000 h in liquid lead with 1 × 10−7 wt % oxygen level at 480 °C in static and flowing (velocity 1.6 m/s) conditions. Post-test microscopy investigation using scanning electron microscope with focused ion beam (FIB) was performed and it demonstrated significant differences in the formation of thin oxide layers in the two conditions. Maximum oxide thickness was 2 μm in the static lead (Pb) and less than 0.1 μm in the flowing Pb. In the static condition, oxide scale was not continuous and local corrosion attack was indicated; but in flowing condition the oxide layer was continuous without any corrosion attacks.


2016 ◽  
Vol 879 ◽  
pp. 873-878 ◽  
Author(s):  
Timo Juuti ◽  
Sampo Uusikallio ◽  
Antti J. Kaijalainen ◽  
Esa Heinonen ◽  
Nyo Tun Tun ◽  
...  

Sample preparation of metastable austenitic-ferritic steels can have a significant effect on the apparent microstructure due to the transformation of austenite to martensite (γ - α'). As a result, these steels often have a complex microstructure with ferrite and martensite, which have relatively similar crystal structures, making it very difficult to analyse. However, the quantitative analysis of such microstructures and the effect of the sample preparation are very important for the further study of the steel. In this research, the effect of sample preparation in metastable austenitic-ferritic stainless steel was studied by using three different sample preparation methods. In addition to conventional mechanical etching with colloidical silica and electropolishing, focused ion beam (FIB) milling was used to create an optimal sample surface to be further analysed with electron backscatter diffraction (EBSD). Micrographs were obtained from each sample before and after sample preparation using field emission scanning electron microscopy (FESEM) and laser scanning confocal microscopy (LSCM), and the microstructure was analysed using EBSD. The surface flatness required for good EBSD analysis was significantly better using FIB milling than mechanical polishing, while electropolishing results in the greatest topography and an arched sample surface. The amount of martensite was found to be dependent on the sample preparation: least martensite was formed during electropolishing, while surprisingly mechanical polishing and FIB milling resulted in equal amounts of martensite.


Sign in / Sign up

Export Citation Format

Share Document