Stability of Al2SiO5 solid solutions

Author(s):  
R. G. J. Strens

SummaryAn ideal solution model has been used to calculate the effect of the substitutions on the stability fields of the Al2SiO5 minerals. The results show that divariant assemblages of andalusite+sillimanite and sillimanite + kyanite solid solutions can coexist over ranges of 0·1 to 0·4 kbar at 527° C, but that kyanite+andalusite would be stable over a much narrower range. On adding (Fe, Mn)3+ to the system, the andalusite/sillimanite curve can be considered to rotate about the invariant point, first eliminating the sillimanite field, and then penetrating the kyanite field. Wide zones of viridine+sillimanite and viridine+kyanite are thus formed.In view of the ease with which epitaxial nucleation occurs in the Al2SiO5 system, it is considered that extensive metastable growth of andalusite, sillimanite, and kyanite is improbable in nature. Metastable persistence is likely to occur in dry systems, or in the presence of an ‘armour’ of the stable phase, but reaction of millimetre-sized crystals should be completed in geologically short times when aqueous or silicate liquids are present. The combination of the effects of metastable persistence and solid solution seems adequate to account for essentially all the examples of kyanite + sillimanite and kyanite + andalusite, and for many sillimanite +andalusite assemblages. In addition, if small supersaturations develop during metamorphism, simultaneous growth of andalusite + sillimanite could occur over a restricted temperature range.

1971 ◽  
Vol 8 (3) ◽  
pp. 311-337 ◽  
Author(s):  
Ki-Tae Kim ◽  
B. J. Burley

Phase equilibria were determined in the P–T range of 0.5–10 Kb and 150–900 °C in the system NaAlSi3O8 – NaAlSiO4 – H2O. Two isobaric (2 Kb and 5.15 Kb) T–X phase diagrams (projected to a dry base) were completely determined and show that the stability field of analcite solid solutions has a large distorted pentagonal shape. The phase relations for the transition: nepheline hydrate I [Formula: see text] nepheline + H2O on the composition join NaAlSiO4 – H2O are not binary. It was found that there exists a narrow zone for the transition. The true P–T curve was found and determined in terms of a ternary univariant reaction: nepheline hydrate I + analcite [Formula: see text] nepheline + H2O. In the system NaAlSi3O8 – SiO2 – H2O, albite contains about 5 wt % silica in solid solution at 5.15 Kb and 670 °C.The equilibrium compositions of various univariant phases were determined essentially on the basis of the T–X phase diagrams. Another univariant reaction (zeolite species P = analcite + nepheline – hydrate I + H2O) was found at 2 Kb/215 °C and 5.15 Kb/235 °C and determined on a P–T projection. Three singular points were determined; two of them are located at 0.8 Kb/390 °C and 9.4 Kb/475 °C respectively on a univariant P–T curve for the reaction nepheline hydrate I + analcite = nepheline + H2O; the other one is located at 6 Kb/655 °C on a univariant P–T curve along which nepheline, analcite, liquid, and vapor coexist. The petrogenetic implication of analcite is discussed fully.


IUCrJ ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 1124-1130
Author(s):  
Vivek Verma ◽  
Simone Bordignon ◽  
Michele R. Chierotti ◽  
Monica Lestari ◽  
Kieran Lyons ◽  
...  

Multidrug products enable more effective therapies and simpler administration regimens, provided that a stable formulation is prepared, with the desired composition. In this view, solid solutions have the advantage of combining the stability of a single crystalline phase with the potential of stoichiometry variation of a mixture. Here a drug–prodrug solid solution of cortisone and cortisol (hydrocortisone) is described. Despite the structural differences of the two components, the new phase is obtained both from solution and by supercritical CO2 assisted spray drying. In particular, to enter the solid solution, hydrocortisone must violate Etter's rules for hydrogen bonding. As a result, its dissolution rate is almost doubled.


1980 ◽  
Vol 43 (332) ◽  
pp. 1035-1045 ◽  
Author(s):  
Ki-Tae Kim ◽  
B. J. Burley

SummaryThe stability field of analcime solid solutions in the system NaAlSi3O8-NaAlSiO4-H2O has been previously determined by Kim and Burley (1971a). These experiments are re-examined with a view to determining the variations of the room-temperature cell parameters of analcime as a function of temperature of synthesis and composition. It is shown from this evidence that most of the analcime solid solutions in these experiments are equilibrium compositions. The increase in the cell dimension of quenched analcime solid solution is found to be 5 × 10−5 Å/°C. It is suggested that birefringence in analcime is induced by low water-pressure relative to total pressure. A phase transition appears to be observed in quenched analcimes of this study and is thought to be the same as that in the Golden analcime reported by Yoder and Weir (1960).


Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2020 ◽  
Vol 58 (1) ◽  
pp. 71-83
Author(s):  
Elahe Mansouri Gandomani ◽  
Nematollah Rashidnejad-Omran ◽  
Amir Emamjomeh ◽  
Pietro Vignola ◽  
Tahereh Hashemzadeh

ABSTRACT Turquoise, CuAl6(PO4)4(OH)8·4H2O, belongs to the turquoise group, which consists of turquoise, chalcosiderite, aheylite, faustite, planerite, and UM1981-32-PO:FeH. In order to study turquoise-group solid solutions in samples from the Neyshabour and Meydook mines, 17 samples were selected and investigated using electron probe microanalysis. In addition, their major elements were compared in order to evaluate the feasibility of distinguishing the provenance of Persian turquoises. The electron microprobe data show that the studied samples are not constituted of pure turquoise (or any other pure endmember) and belong, from the chemical point of view, to turquoise-group solid solutions. In a turquoise–planerite–chalcosiderite–unknown mineral quaternary solid solution diagram, the chemical compositions of the analyzed samples lie along the turquoise–planerite line with minor involvement of chalcosiderite and the unknown mineral. Among light blue samples with varying hues and saturations from both studied areas, planerite is more abundant among samples from Meydook compared with samples from Neyshabour. Nevertheless, not all the light blue samples are planerite. This study demonstrates that distinguishing the deposit of origin for isochromatic blue and green turquoises, based on electron probe microanalysis method and constitutive major elements, is not possible.


1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


Sign in / Sign up

Export Citation Format

Share Document